自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

鲸鱼的博客

一个不爱学计算机的渣渣

  • 博客(11)
  • 收藏
  • 关注

原创 深度学习入门(基于python的理论与实现)-10神经网络(softmax函数)

假设输出层共有n个神经元,计算第k个神经元的输出为yk.softmax函数的分子是输入信号ak的指数函数,分母是所有输入信号的指数函数的和。用图表示softmax函数的话,softmax函数的输出通过箭头与所有输入信号相连,这是因为,输出层的各个神经元都受到所有输入信号的影响。soft函数特征:softmax函数的输出是0.0到1.0之间的实数。一般而言,神经网络只把输出值最大的神经元所对应的类别作为识别结果,并且即使使用softmax函数,输出值最大的神经元也不会改变。

2025-09-27 13:44:28 407

原创 深度学习入门(基于python的理论与实现)-09神经网络(3层神经网络的实现)

最后是第2层到输出层的信号传递(图3-20)。输出层的实现也和之前的 实现基本相同。不过,最后的激活函数和之前的隐藏层有所不同。隐藏层的加权和用a表示,被激活函数转换后的信号用z表示。此外,h()表示激活函数,这里采用sigmoid函数。输出层的激活函数用σ()表示,不同于隐 藏层的激活函数h()(σ读作sigma)(1)表示神经元的层号。

2025-09-19 15:54:39 123

原创 深度学习入门(基于python的理论与实现)-09神经网络(多维数组运算)

矩阵乘积可以通过np.dot(A,B)来实现。要注意的是,np.dot(A, B)和np.dot(B, A)的 值可能不一样。实现该神经网络时,要注意X、W、Y的形状,特别是X和W的对应 维度的元素个数是否一致,这一点很重要。注意矩阵A*B时:A的第1维的元素个数(列数) 必须和矩阵B的第0维的元素个数(行数)相等。运算结果的矩阵C的形状是由矩阵A的行数 和矩阵B的列数构成的。

2025-09-19 14:37:45 280

原创 深度学习入门(基于python的理论与实现)-08神经网络(ReLU函数)

【代码】深度学习入门(基于python的理论与实现)-08神经网络(ReLU函数)

2025-09-19 13:37:24 65

原创 深度学习入门(基于python的理论与实现)-07神经网络

图3-1中的网络一共由3层神经元构成,但实质上只有2层神经 元有权重,因此将其称为“2层网络”。中间层也称隐藏层。引入h(x)h(x)会将输入信号的总和转换为输出信号,这种函数称为y =h(a)a:输入信号和偏置的总和,然后用h()将a转换为y输出。

2025-09-19 13:16:41 140

原创 深度学习入门(基于python的理论与实现)-06多层感知机(multi-layered perceptron)

实际上,与门、或门是单层感知机,而异或门是2层感知机。叠加了多 层的感知机也称为多层感知机(multi-layered perceptron)。由一条曲线分割的空间称为非线性空间,由直线分割而成的空间称为线性空间。异或门的制作方法:组合前面已有的与门、与非门、或门。异或门: 只有x1和x2不相同,输出为1。感知机的绝妙之处在于它可以“叠加层”。感知机的局限性就在于他只能表示由一条。异或门的python实现。

2025-09-19 11:19:42 142

原创 深度学习入门(基于python的理论与实现)-05感知机(perceptron)

w1、w2是权重,权重越大,对应的信号的重要性越高,通过的信号就越大。图中⚪称为神经元或者节点,输入信号被送往神经元时,会分别乘以固定的权重(w1x1,w2x2),神经元会计算传来的信号的总和,只有当这个总和超过某个界限值时,才会输出1.这也称为“神经元被激活”。要表示与非门,实际上就是将与门的参数值取反:(w1,w2,θ)=(-0.5,-0.5,-0.7),就可以实现与非门。eg:(w1,w2,θ)=(0.5,0.5,0.7)时,且x1和x2同时为1,信号加权总和才会超过给定的阈值。

2025-09-18 20:38:54 497

原创 深度学习入门(基于python的理论与实现)-04python入门(matplotlib)

pyplot中还提供了显示图像的方法imshow()。另外,matplotlib.image模块的imread()方法可以读入图形。matplotlib可以轻松地绘制图形地库,使用matplotlib可以轻松地绘制图形和实现数据地可视化。使用matplotlib地pyplot模块绘制图形,下面是sin函数曲线地例子。你可以通过设置不同的参数来控制线条的样式、颜色和标记。以上三节为实深度学习(神经网络)所需要的编程知识。在Matplotlib中,

2025-09-18 19:17:59 101

原创 深度学习入门(基于python的理论与实现)-03python入门

数学上将一维数组称为向量,二维数组称为矩阵。可将一般化之后的向量或矩阵等统称为张量(tensor)。三维数组及以上称为张量或多维数组。注意必须两个数组之间元素个数相同,否则会报错。这种运算叫element-wise(对应元素的)numpy对数据的处理主要通过c或c++实现的,在不损失性能情况下,使用python语法。在深度学习的实现中,需要使用NumPy的数组类(numpy.array),提供的方法。numpy是外部库,不包含在标准python 中,需要导入NumPy库。广播(不同形状数组之间的运算)

2025-09-18 16:59:14 165

原创 深度学习入门(基于python的理论与实现)-02python入门

执行python脚本文件:cmd 运行后 python file.py。定义新的类(创建数据类型):python中利用class关键字来定义类。python脚本文件:后缀.py。内置数据类型:int str 等。

2025-09-18 15:38:56 113

原创 深度学习入门(基于python的理论与实现)-01python入门

本节主要介绍python数据类型、变量、列表、字典、bool、if语句、for语句、函数等python 基础知识的了解,还未涉及深度学习编程语言:python 版本:python 3.x库:NumPy<用于数值计算>、Matplotib<用来画图>安装:确认python版本启动python解释器了解数据类型。

2025-09-17 18:41:28 185

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除