数据可视化 | 期末复习 | 补档

本文深入探讨了数据可视化的重要概念,包括科学可视化、信息可视化和可视分析系统的区别,强调了可视化设计的核心原则:简单性和一致性。文章详细介绍了数据属性、常用图表以及可视化流程,如箱线图、直方图和散点图。此外,还涵盖了视觉编码、图形感知和交互性在数据可视化中的应用,如前注意力机制、格式塔学说、变化盲视和交互设计原则。同时,文章对高维数据可视化方法进行了详尽分析,如降维技术(MDS、PCA、SNE和T-SNE)及其优缺点。最后,文章讨论了层次可视化和图可视化,如节点链接式、空间填充式树图以及力导向布局。通过对这些内容的探讨,读者将更深入地理解数据可视化的重要性及其在数据探索和分析中的价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📚介绍可视化

🐇什么是可视化

将非视觉的数据通过某种映射的方式(生成图像)串联视觉表达,生成可读可识别的结果,帮助用户高效地完成一些目标。

🐇科学可视化,信息可视化,可视分析系统三者之间有什么区别🔥

  • 科学可视化侧重于使用计算机图形学来创建视觉图像,主要关注三维现象(具有天然几何结构的数据)的可视化,如建筑学、气象学、医学或生物学方面的各种系统,重点在于对体、面以及光源等等的逼真渲染,目的是以图形方式说明科学数据,这有助于理解科学概念或结果的复杂、通常是大规模的数字表示。
  • 信息可视化是通过使用交互式可视化界面来传达抽象数据。抽象数据包括数字和非数字数据(抽象数据结构,如树状结构或者图形),如地理信息与文本,柱状图、趋势图、流程图、树状图等,这些图形的设计都将抽象的概念转化成为可视化信息。
  • 可视分析是通过可视化交互界面促进的分析推理科学,主要挖掘数据背景的问题与原因,尤其关注推理和分析。

  • 信息可视化与科学可视化的
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啦啦右一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值