518.零钱兑换
题目链接:518. 零钱兑换 II - 力扣(LeetCode)
题解:
本题使用动态规划法,动态规划五部曲
1.确定dp数组以及下标的含义
dp[j] 表示金额j所组成的组合数dp[j]
2.确定递推公式
dp[j]是所有dp[j- coins[i]]的总和,所以递推公式是dp[j] += dp[j - coins[i]]
3.dp数组初始化
dp[0] = 0是错误的,如果dp[0] =0则后面都是0,所以dp[0] = 1,其实dp[0] =1本身是没有什么意义,dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。
4.确定遍历顺序
由于本题是要求组合数的情况,并不在乎顺序问题,故两种遍历顺序都可,先遍历钱币再遍历总金额 ,这种得到是组合数,如5有一种组合是1+2+2,这种只算一种情况,但先便利总金额再遍历钱币,得到则是排列数,组合只能有一种,但满足该组合的排列顺序不止一种,第一种可以快速得出答案,第二种等于是将总金额多次计算从而得出多出排列情况。
for (int i =0; i < coins.size(); i++){
for( int j = coins[i]; j <= amount; j++) {
dp[j] += dp[j - coins[i]];
}
}
5.举例dp数组
C++代码如下:
class Solution {
public:
int change(int amount, vector<int>& coins) {
vector<int> dp(amount + 1, 0);
dp[0] = 1;
for (int i = 0; i <coins.size(); i++) { //
for (int j = 0; i <= amount; j++) { //
dp[j] += dp[j - coins[i]];
}
}
return dp[amount];
}
};
377.组合总和IV
题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)
题解:
本题使用动态规划法,依旧是动态规划五部曲
1.确定dp数组以及下标含义
dp[i] :组成目标正整数i的排列个数为dp[i]
2.确定递推公式
dp[i] += dp[i - nums[j]];
3.dp数组初始化
根据递推公式得dp[0] =1
4.确定遍历顺序
有两种遍历方式,先遍历整数i再遍历nums,还有一种先遍历nums再遍历正整数i,但题目中说到要的是排列数,所以先遍历正整数i再遍历nums。
5.举例推导dp数组
C++代码如下:
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 0; i <= target; i++) { // 遍历背包
for (int j = 0; j < nums.size(); j++) { // 遍历物品
if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
dp[i] += dp[i - nums[j]];
}
}
}
return dp[target];
}
};