Day44:代码随想录算法训练营第44天| 518.零钱兑换

518.零钱兑换

题目链接:518. 零钱兑换 II - 力扣(LeetCode)

题解:

本题使用动态规划法,动态规划五部曲

1.确定dp数组以及下标的含义

dp[j] 表示金额j所组成的组合数dp[j]

2.确定递推公式

dp[j]是所有dp[j- coins[i]]的总和,所以递推公式是dp[j] += dp[j - coins[i]]

3.dp数组初始化

dp[0] = 0是错误的,如果dp[0] =0则后面都是0,所以dp[0] = 1,其实dp[0] =1本身是没有什么意义,dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

4.确定遍历顺序

由于本题是要求组合数的情况,并不在乎顺序问题,故两种遍历顺序都可,先遍历钱币再遍历总金额 ,这种得到是组合数,如5有一种组合是1+2+2,这种只算一种情况,但先便利总金额再遍历钱币,得到则是排列数,组合只能有一种,但满足该组合的排列顺序不止一种,第一种可以快速得出答案,第二种等于是将总金额多次计算从而得出多出排列情况。

for (int i =0; i < coins.size(); i++){
    for( int j = coins[i]; j <= amount; j++) {
        dp[j] += dp[j - coins[i]];
         }
   }

5.举例dp数组

 C++代码如下:

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        vector<int> dp(amount + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <coins.size(); i++) { // 
            for (int j = 0; i <= amount; j++) { // 
                dp[j] += dp[j - coins[i]];
            }
        }
        return dp[amount];
    }
};

377.组合总和IV

题目链接:377. 组合总和 Ⅳ - 力扣(LeetCode)

题解:

 本题使用动态规划法,依旧是动态规划五部曲

1.确定dp数组以及下标含义

dp[i] :组成目标正整数i的排列个数为dp[i]

2.确定递推公式

dp[i] += dp[i - nums[j]];

3.dp数组初始化 

根据递推公式得dp[0] =1

4.确定遍历顺序

有两种遍历方式,先遍历整数i再遍历nums,还有一种先遍历nums再遍历正整数i,但题目中说到要的是排列数,所以先遍历正整数i再遍历nums。

5.举例推导dp数组

C++代码如下:

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target + 1, 0);
        dp[0] = 1;
        for (int i = 0; i <= target; i++) { // 遍历背包
            for (int j = 0; j < nums.size(); j++) { // 遍历物品
                if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {
                    dp[i] += dp[i - nums[j]];
                }
            }
        }
        return dp[target];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值