线性代数(基础知识点)

行列式

行列式是一个数,它是不同行不同列元素乘积的代数和。

n阶行列式的完全展开式(P218)

一个排列中,如果一个大的数排在小的数之前,就称这两个数构成一个逆序。一个数列的逆序总数称为这个排列的逆序数。如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列

在n阶行列式

D = \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & & ...\\ a_{n1} & a_{n2} & ... & a_{nn} \end{bmatrix}

中划去a_{i,j}所在的第i行、第j列的元素,由剩下的元素按原来的位置排法构成的一个n-1阶的行列式

\begin{bmatrix} a_{11} & ... & a_{1,j-1} & a_{1,j+1} & ... & a_{1n}\\ ... & & ... & ... & & ...\\ a_{i-1,1} & ... & a_{i-1,j-1} & a_{i-1,j+1} & ... & a_{i-1,n}\\ a_{i+1,1} & ... & a_{i+1,j-1} & a_{i+1,j+1} & ... & a_{i+1,n}\\ ... & & ... & ... & & ...\\ a_{n1} & ... & a_{n,j-1} & a_{n,j+1} & ... & a_{nn} \end{bmatrix}

称其为a_{i,j}余子式,记为M_{i,j};称(-1)^{i+j}M_{i,j}a_{i,j}代数余子式,记为A_{i,j},即

A_{i,j}=(-1)^{i+j}M_{i,j}

矩阵

m \times n个数排成如下 m行 n列的一个表格

\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & & ...\\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}

称为一个 m \times n 矩阵,当 m = n 时,矩阵A 称为 n阶矩阵或叫 n阶方阵

如果一个矩阵的所有元素都是0,即

\begin{bmatrix} 0 & 0 & ... & 0\\ 0 & 0 & ... & 0\\ ... & ... & & ...\\ 0 & 0 & ... & 0 \end{bmatrix}

则称这个矩阵是零矩阵,可简记为O。 

两个矩阵A = [a_{ij}]_{m\times n},B = [b_{ij}]_{s\times t},如果 m = s,n = t,则称A与B是同型矩阵

两个同型矩阵A = [a_{ij}]_{m\times n},B = [b_{ij}]_{s\times t},如果对应的元素都相等,即a_{ij} = b_{ij} ( i = 1, 2, ..., m ; j = 1, 2, ... , n),则称矩阵A与B相等,记作A = B

n阶方阵A = [a_{ij}]_{m\times n}的元素构成的行列式

称为n阶方阵A的行列式,记作 \left | A \right | 或 detA .

\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & & ...\\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}

常见的矩阵

设A是n阶矩阵.

(1)单位阵:主对角元素为1,其余元素为0的矩阵称为单元阵,记成 E_{n}

(2)数量阵:数k与单位阵E的积kE称为数量阵。

(3)对角阵:非对角元素都是0的矩阵(即 \forall i \neq j 恒有a_{ij} = 0)称为对角阵,记成\Lambda。               \Lambda = diag\left [ a_{1} , a_{2} , ... , a_{n} \right ].

(4)上(下)三角阵:当 i > j (i < j)时,有a_{ij} = 0 的矩阵称为上(下)三角阵。

(5)对称阵:满足A^{T} = A,a_{ij} = a_{ji} 的矩阵称为对称阵。

(6)反对称阵:满足A^{T} = - A,即 a_{ij} = - a_{ji}a_{ii} = 0的矩阵称为反对称阵。

(7)伴随矩阵:由矩阵A的行列式 \left | A \right | 所有的代数余子式所构成的形如

\begin{bmatrix} A_{11} & A_{12} & ... & A_{1n}\\ A_{21} & A_{22} & ... & A_{2n}\\ ... & ... & & ...\\ A_{m1} & A_{m2} & ... & A_{mn} \end{bmatrix}

的矩阵称为矩阵A的伴随矩阵,记为A*.

例如,A = \begin{bmatrix} 2 & 1 & 2\\ -1 & 0 & 3\\ 1 & -2 & 1 \end{bmatrix},则计算代数余子式,得

A_{11} = \begin{vmatrix} 0 & 3\\ -2 & 1 \end{vmatrix} = 6A_{12} = -\begin{vmatrix} -1 & 3\\ 1 & 1 \end{vmatrix} = 4A_{13} = \begin{vmatrix} -1 & 0\\ 1 & -2 \end{vmatrix} = 2A_{21} = -\begin{vmatrix} 1 & 2\\ -2 & 1 \end{vmatrix} = -5A_{22} = \begin{vmatrix} 2 & 2\\ 1 & 1 \end{vmatrix} = 0A_{23} = -\begin{vmatrix} 2 & 1\\ 1 & -2 \end{vmatrix} = 5A_{31} = \begin{vmatrix} 1 & 2\\ 0 & 3 \end{vmatrix} = 3A_{32} = -\begin{vmatrix} 2 & 2\\ -1 & 3 \end{vmatrix} = -8A_{33} = \begin{vmatrix} 2 & 1\\ -1 & 0 \end{vmatrix} = 1

按定义A^{*} = \begin{vmatrix} 6 & -5 & 3\\ 4 & 0 & -8\\ 2 & 5 & -1\end{vmatrix}

(8)可逆矩阵:设 是 n阶矩阵,如果存在 n阶矩阵 B 使得

AB = BA = E (单位矩阵)

成立,则称A是可逆矩阵非奇异矩阵,B是A的逆矩阵,记成 A^{-1} = B.

(其中,若 A 可逆,则 A 的逆矩阵唯一。且 A 可逆 \Leftrightarrow \left | A \right |\neq 0.)

n阶矩阵A可逆的充分必要条件

(1)存在 n阶矩阵 B,使 AB = E(或 BA = E)。 

(2)\left | A \right |\neq 0,或秩 r(A) = n,或 A 的列(行)向量线性无关。

(3)齐次方程组 Ax = 0 只有零解。

(4)\forall b,非齐次线性方程组 Ax = b 总有唯一解。

(5)矩阵 A 的特征值全不为0.

一个矩阵的秩是其非零子式的最高阶数,一个向量组的秩则是其最大无关组所含的向量个数。

例如: 对于下面的矩阵 A 求秩 r(A)

A = \begin{bmatrix} 1 & 2 & -1\\ 2 & 3 & 5\\ 3 & 6 & -3 \end{bmatrix}

计算过程:

\begin{bmatrix} 1 & 2 & -1\\ 2 & 3 & 5\\ 3 & 6 & -3 \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 2 & -1\\ 0 & -1 & 7\\ 0 & 0 & 0 \end{bmatrix}\rightarrow \begin{bmatrix} 1 & 0 & 13\\ 0 & 1 & -7\\ 0 & 0 & 0 \end{bmatrix} 

初等变换与初等矩阵的概念

\\初等变换

A 是 m\times n 矩阵,

(1)用某个非零常数 k(k\neq 0) 乘 A 的某行(列)的每个元素;

(2)互换 A 的某两行(列)的位置;

(3)将 A 的某行(列)元素的 k 倍加到另一行(列)。

称为矩阵的三种初等行(列)变换,且分别称为初等倍乘互换倍加行(列)变换,统称初等变换。

\\初等矩阵

由单位矩阵经过一次初等变换得到的矩阵称为初等矩阵,它们分别是

(1)倍乘初等矩阵,记 E( i( k)) .

E(2(k))=\begin{bmatrix} 1 & 0 & 0\\ 0 & k & 0\\ 0 & 0 & 1 \end{bmatrix}

 E( 2( k))表示由单位阵 的第二行(或第二行)乘 k(k\neq 0) 倍得到的矩阵。

(2)互换初等矩阵,记 E(i , j).

E(1,2)=\begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}

E(1 , 2)表示由单位阵 E 的第一、二行(或一、二列)互换得到的矩阵。

(3)倍加初等矩阵,记E(i j (k)).

E(13(k))=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ k & 0 & 1 \end{bmatrix}

E(1 3 (k))表示由单位阵 E 的第一行的 k 倍加到第三行得到的矩阵。

\\等价矩阵

矩阵 经过有限次初等变换变成矩阵 ,则称 与 等价,记成A\cong B.若A\cong \begin{bmatrix} E_{r} & O\\ O & O \end{bmatrix},则后者称为 A 的等价标准形。( A 的等价标准形是与 A 等价的所有矩阵中的最简矩阵)。

行阶梯矩阵、行最简矩阵

\\行阶梯矩阵

(1)如果矩阵中有零行(即这一行元素全是0),则零行在矩阵的底部。

(2)每个非零行的主元(即该行最左边的第1个非零元),它们的列指标随着行指标的递增而严格增大。

例 \begin{bmatrix} 2 & 1 & 3\\ 0 & 0 & 0\\ 0 & 0 & 5 \end{bmatrix}\begin{bmatrix} 1 & 3 & -2\\ 0 & 1 & 4\\ 0 & 2 & 5 \end{bmatrix}都不是行阶梯矩阵。

例 \begin{bmatrix} 1 & 2 & 0 & 3\\ 0 & 1 & -1 & 5\\ 0 & 0 & 0 & 6 \end{bmatrix}\begin{bmatrix} 3 & 0 & 1 & -4\\ 0 & 0 & 2 & 7\\ 0 & 0 & 0 & 0 \end{bmatrix}是行阶梯矩阵。

\\行最简矩阵

一个行阶梯矩阵,如果还满足:

非零行的主元都是1,且主元所在的列的其他元素都是0,则称其为行最简矩阵。

例 \begin{bmatrix} 1 & 0 & 3 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 & 2 & 0\\ 0 & 1 & 3 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & -1 & 0 & 0\\ 0 & 2 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} 都不是行最简矩阵。

例 \begin{bmatrix} 1 & 0 & -1 & 0\\ 0 & 1 & 2 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 2\\ 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 0 \end{bmatrix} 是行最简矩阵。

分块矩阵的概念

将矩阵用若干纵线和横线分成许多小块,每一小块称为原矩阵的子矩阵(或子块),吧子块看成原矩阵的一个元素,则原矩阵叫分块矩阵

由于不同的需要,同一个矩阵可以用不同的方法分块,构成不同的分块矩阵。

方阵的行列式(抽象n阶方阵行列式公式)

(1)若A是n阶矩阵,A^{T}是A的转置矩阵,则 \left | A^{T} \right |=\left | A \right |

(2)若A是n阶矩阵,则 \left | kA \right |=k^{n}\left | A \right |

(3)(行列式乘法公式)若A、B都是n阶矩阵,则 \left | AB \right |=\left | A \right |\left | B \right |;特别地 \left | A^{2} \right |=\left | A \right |^{2}

(4)若A是n阶矩阵,A^{*}是A的伴随矩阵,则\left | A^{*} \right |=\left | A \right |^{n-1}

(5)若A是n阶矩阵可逆矩阵,A^{-1}是A的逆矩阵,则\left | A^{-1} \right |=\left | A \right |^{-1}

(6) 设A是m阶矩阵,B是n阶矩阵

\begin{vmatrix} A & O\\ C & B \end{vmatrix}=\begin{vmatrix} A & D\\ O & B \end{vmatrix}=\left | A \right |\cdot \left | B \right |        ;        \begin{vmatrix} O & A\\ B & C \end{vmatrix}=\begin{vmatrix} D & A\\ B & O \end{vmatrix}=(-1)^{mm}\left | A \right |\cdot \left | B \right |

向量

向量的概念、向量组的概念

 n个数 a_{1},a_{2},...,a_{n} 所组成的有序数组

 \alpha =\left ( a_{1}, a_{2},...,a_{n}\right )^{T}或 \alpha =\left ( a_{1},a_{2},..,a_{n} \right ) 

叫做n维向量,其中 a_{1},a_{2},...,a_{n} 叫做向量 \alpha 的分量(或坐标),前一个表示式称为列向量,后者称为行向量

若干个同维数的行向量(或同维数的列向量)所组成的集合叫做向量组

a_{1},a_{2},...,a_{r} 及 a_{1},a_{2},...,a_{r},...,a_{s}(其中 s\geq r),称 a_{1},a_{2},...,a_{r} 是 a_{1},a_{2},...,a_{r},...,a_{s}部分组a_{1},a_{2},...,a_{s} 是整体组

向量组

a_{1}=\left [ a_{11},a_{21},...,a_{r1} \right ]^{T}a_{2}=\left [ a_{12},a_{22},...,a_{r2} \right ]^{T},… ,a_{m}=\left [ a_{1m},a_{2m},...,a_{rm} \right ]^{T}

\tilde{\alpha }_{1}=\left [ a_{11},a_{21},...,a_{r1},...,a_{s1} \right ]^{T}\tilde{\alpha }_{2}=\left [ a_{12},a_{22},...,a_{r2},...,a_{s2} \right ]^{T},… ,\tilde{\alpha }_{m}=\left [ a_{1m},a_{2m},...,a_{rm},...,a_{sm} \right ]^{T}

其中 s\geq r ,则称 \tilde{\alpha }_{1},\tilde{\alpha }_{2},...,\tilde{\alpha }_{m} 为向量组 \alpha _{1},\alpha _{2},...,\alpha _{m} 的延伸组(或称 \alpha _{1},\alpha _{2},...,\alpha _{m} 是 \tilde{\alpha }_{1},\tilde{\alpha }_{2},...,\tilde{\alpha }_{m} 的缩短组)。

线性表出、线性相关

m 个 n 维向量 \alpha _{1},\alpha _{2},...,\alpha _{m} 及 m 个数 k_{1},k_{2},...,k_{m} ,则向量

k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots +k_{m}\alpha _{m}

称为向量 \alpha _{1},\alpha _{2},...,\alpha _{m} 的一个线性组合k_{1},k_{2},...,k_{m} 称为这个线性组合的系数。

若 \beta 能表示成 \alpha _{1},\alpha _{2},...,\alpha _{m} 的线性组合,即

\beta =k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots +k_{m}\alpha _{m}

则称 \beta 能由 \alpha _{1},\alpha _{2},...,\alpha _{m} 线性表出

对 m 个 n 维向量 \alpha _{1},\alpha _{2},...,\alpha _{m} ,若存在不全为零的数 k_{1},k_{2},...,k_{m} ,使得

k_{1}\alpha _{1}+k_{2}\alpha _{2}+\cdots +k_{m}\alpha _{m}=0

成立,则称向量组 \alpha _{1},\alpha _{2},...,\alpha _{m} 线性相关,否则称它们线性无关

向量组的秩、矩阵的秩

\\向量组的秩

向量组 \alpha _{i_{1}},\alpha _{i_{2}},...,\alpha _{i_{r}} ( 1\leq i_{r}\leq s )是向量组 \alpha _{1},\alpha _{2},...,\alpha _{s} 的部分组,满足条件

(1)\alpha _{i_{1}},\alpha _{i_{2}},...,\alpha _{i_{r}} 线性无关;

(2)\alpha _{i_{1}},\alpha _{i_{2}},...,\alpha _{i_{r}} 中加入任一向量 \alpha _{i} ( 1\leq i\leq s ),则向量组 \alpha _{i_{1}},\alpha _{i_{2}},...,\alpha _{i_{r}},\alpha _{i}线性相关。则称向量组 \alpha _{i_{1}},\alpha _{i_{2}},...,\alpha _{i_{r}} 的极大线性无关组

向量组的极大线性无关组的向量个数称为向量组的秩,记为 r\left ( a_{1},a_{2},...,a_{s} \right ) 。

设向量组    \left ( I \right )\alpha _{1},\alpha _{2},...,\alpha _{s} ;   \left ( II \right )\beta _{1},\beta _{2},...,\beta _{t}

若 ( I ) 中的每个向量 \alpha _{i} ,i = 1 , 2 , ... , s,均可由 ( II ) 线性表出,则称 ( I ) 可由 ( II ) 线性表出;若向量组 ( I ) 、( II ) 可以相互表出,则称向量组 ( I ) 、( II ) 是等价向量组,记成 ( I ) \cong ( II ) 。

\\矩阵的秩

在 m\times n 矩阵 A 中,任取 k 行与 k 列 ( k\leq m , k\leq n ),位于这些行与列的交叉点上的 k^2 个元素按其在原来矩阵 A 中的次序可构成一个 k 阶行列式,称其为矩阵 A 的一个 k 阶子式

A 是 m\times n 矩阵,若 A 中存在 r 阶子式不等于零, r 阶以上子式均等于零,则称矩阵 A 的秩为 r ,记成 r(A) ,零矩阵的秩规定为0.

(矩阵的秩)A 是 m\times n 矩阵,若 A 中存在 r 阶子式不等于零, r 阶以上子式军等于零,则称矩阵 A 的秩为 r ,记成 r(A) ,零矩阵的之规定为0.

正交规范化、正交矩阵

\\内积

设有 n 维向量 \alpha =\left ( a_{1},a_{2},...,a_{n} \right )^T , \beta =\left ( b_{1},b_{2},...,b_{n} \right )^T,令

\left ( \alpha ,\beta \right )=\alpha ^{T}\beta =\beta ^{T}\alpha =\sum_{i=1}^{n}a_{i}b_{i}

则称 \left ( \alpha ,\beta \right ) 为向量 \alpha , \beta 的内积

设 \left | \alpha \right |=\sqrt{\left ( \alpha ,\alpha \right )}=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots +a_{n}^{2}} 称为向量 \alpha =\left ( a_{1},a_{2},...,a_{n} \right )^T 的模(长度), \left | \alpha \right |=1 时称 \alpha 为单位向量

两个向量 \alpha ,\beta 夹角的余弦为

cos(\widehat{\alpha ,\beta })=\frac{(\alpha ,\beta )}{\left | \alpha \right |\left | \beta \right |}

当 (\alpha ,\beta )=0 时,则 cos(\widehat{\alpha ,\beta })=0 , cos(\widehat{\alpha ,\beta })=\frac{\pi }{2} ,此时称向量 \alpha ,\beta 正交

\\施密特正交化

        设向量组 \alpha _{1},\alpha _{2},\alpha _{3} 线性无关,其标准正交化的方法如下(又称正交规范化);

        先正交化,取

\beta _{1}=\alpha _{1} ,

\beta _{2}=\alpha_{2}-\frac{(\alpha_{2} ,\beta_{1} )}{(\beta _{1}\beta _{1})}\beta _{1} ,

\beta _{3}=\alpha_{3}-\frac{(\alpha_{3} ,\beta_{1} )}{(\beta _{1}\beta _{1})}\beta _{1}-\frac{(\alpha_{3} ,\beta_{2} )}{(\beta _{2}\beta _{2})}\beta _{2} ,

则 \beta _1,\beta _2,\beta _3 是正交向量组。

        再将 \beta _1,\beta _2,\beta _3 单位化,取

\eta _1=\frac{\beta _1}{\left | \beta _1 \right |},\eta _2=\frac{\beta _2}{\left | \beta _2 \right |},\eta _3=\frac{\beta _3}{\left | \beta _3 \right |} ,

则 \eta _1,\eta _2,\eta _3 是标准正交向量组,即有 (\eta _i,\eta _j)=\left\{\begin{matrix} 0,i\neq j\\ 1,i=j \end{matrix}\right. . 

\\正交矩阵

A 为 n 阶矩阵,若 AA^T=A^TA=E ,则称 A正交矩阵

线性方程组

基本概念

        我们称

\left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+...+a_{1n}x_{n}=b_1\\ a_{21}x_{1}+a_{22}x_{2}+...+a_{2n}x_{n}=b_2\\ ...\\ a_{m1}x_{1}+a_{m2}x_{2}+...+a_{mn}x_{n}=b_m \end{matrix}\right.     ( I )

是 n 个未知数 m 个方程的非齐次线性方程组,其中 x_1,x_2,...,x_n 代表 n 个未知数,而 b_1,b_2,...b_m 是不全为0的常熟。

        利用矩阵乘法,方程组 ( I ) 可表示为:

\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n}\\ a_{21} & a_{22} & ... & a_{2n}\\ ... & ... & ... & ...\\ a_{m1} & a_{m2} & ... & a_{mn} \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ ...\\ x_n \end{bmatrix}=\begin{bmatrix} b_1\\ b_2\\ ...\\ b_m \end{bmatrix}

于是方程组(I)的矩阵形式:

Ax = b

称 为方程组(I)的系数矩阵。

对矩阵 A 按列分块,记 A=(a_{1},a_{2},...,a_{n}) ,则方程组(I)有向量形式

x_{1}\alpha _{1}+x_{2}\alpha _{2}+\cdots +x_{n}\alpha _{n}=\beta

其中 \alpha _{j}=(\alpha _{1j},\alpha _{2j},\cdots ,\alpha _{mj})^{T}j=1,2,\cdots ,n\beta =(b_{1},b_{2},\cdots ,b_{m})^{T}.

如果 \forall j=1,2,\cdots ,m 恒有 b_{j}=0 ,则称

\left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=0\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=0\\ \cdots \\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}=0 \end{matrix}\right.     ( II )

齐次线性方程组(也称 ( II ) 是 ( I ) 的导出组)。其矩阵形式为:

A x = 0

而齐次方程组 ( II ) 的向量形式,则是

x_{1}\alpha _{1}+x_{2}\alpha _{2}+\cdots +x_{n}\alpha _{n}=0

若将一组数 c_{1},c_{2},...,c_{n} 分别代替方程组 ( I ) (或 ( II ) )中的 x_{1},x_{2},...,x_{n} 使 ( I )(或 ( II ) )中 m 个等式都成立,则称 (c_{1},c_{2},...c_{n})^{T} 是方程组 ( I ) (或 ( II ) )的一个

        解方程组就是要求出方程组的所有的解。

        求方程组的解就是要对所给方程组作同解变形,而同解变形的方法:

(1)两个方程互换位置;

(2)用非零常数乘方程的两端;

(3)把某个方程组的k倍加到另一个方程上。

同解变形所对应的矩阵语言就是矩阵的初等行变换

齐次线性方程组

        对于齐次线性方程组

\left\{\begin{matrix} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}=0\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}=0\\ \cdots \\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}=0 \end{matrix}\right.     ( II )

易见 x_{1}=0,x_{2}=0,...,x_{n}=0 必满足每一个方程。故 (0,0,...,0)^{T} 一定是齐次线性方程组的一个解,称其为零解,除去零解之外,如果齐次方程组还有其他的解,那些解就称为非零解

基础解系

        如果 \eta _{1},\eta _{2},...,\eta _{t} 是齐次方程组 A x = 0 的解,而且满足

(1)\eta _{1},\eta _{2},...,\eta _{t} 线性无关,

(2)A x = 0 的任一个解 \eta 都可由 \eta _{1},\eta _{2},...,\eta _{t} 线性表出,

则称 \eta _{1},\eta _{2},...,\eta _{t} 是 A x = 0 的一个基础解系。

解的性质

        如果 \eta _{1},\eta _{2},...,\eta _{t} 是齐次方程组 A x = 0 的解,则对任意常数 k_{1},k_{2},...,k_{t} ,

k_{1}\eta _{1}+k_{2}\eta _{2}+\cdots +k_{t}\eta _{t}

仍是该齐次方程组的解。

 

非齐次线性方程组

 解的性质

1.设 \xi _{1} , \xi _{2} 是方程组 A x = b 的两个解,则 \xi _{1} , -\xi _{2} 是导出组 A x = 0 的解.

2.设 \xi 是方程组 A x = b 的解,\eta 是导出组 A x = 0 的解,k 是任意常数,则 \xi +k\eta 是方程组     A x = b 的解。

\overline{A}=\left [ A,b \right ] 称为方程组 A x = b增广矩阵

特征值和特征向量

特征值、特征向量

        设 A 是 n 阶矩阵,如果存在一个数 \lambda 及非零的 n 维列向量 \alpha ,使得

A\alpha =\lambda \alpha

成立,则称 \lambda 是矩阵 A 的一个特征值,称非零向量 \alpha 是矩阵 A 属于特征值 \lambda 的一个特征向量。

        由定义 A\alpha =\lambda \alpha ,\alpha \neq 0 ,即 (\lambda E-A)\alpha =0,\alpha \neq 0 可见特征向量 \alpha 是齐次方程组 (\lambda E-A)x=0 的非零解。

        设 A=\left [ a_{ij} \right ] 为一个 n 阶矩阵,则行列式

\left | \lambda E-A \right |=\begin{vmatrix} \lambda -a_{11} & -a_{12} & \cdots & -a_{1n}\\ -a_{21} & \lambda -a_{22} & \cdots & -a_{2n}\\ \vdots & \vdots & & \vdots\\ -a_{n1} & -a_{n2} & \cdots & \lambda -a_{nn} \end{vmatrix}

称为矩阵 A 的特征多项式, \left | \lambda E-A \right |=0 求矩阵 A 的特征方程

        求特征值,特征向量的方法:

(1)先由 \left | \lambda E-A \right |=0 求矩阵 A 的特征值 \lambda _{i} (共 n 个),再由 (\lambda _{i}E-A)x=0 求基础解系,即矩阵 A 属于特征值 \lambda _{i} 的线性无关的特征向量。

(2)用定义 A\alpha =\lambda \alpha 推理分析。

相似矩阵

        设 A , B 都是 n 阶矩阵,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称 BA相似矩阵,或 A 相似于 B ,记成 A\sim B 。

        若A\sim \Lambda ,其中 \Lambda 是对角阵,则称 A 可相似对角化。\Lambda 是 A相似标准形

        根据相似的定义,可知

        性质(1)A\sim A ,反身性。

               (2)若 A\sim B\Rightarrow B\sim A ,对称性

               (3)若 A\sim B,B\sim C\Rightarrow A\sim C ,传递性。

二次型

一、二次型及其标准形

        n 个向量的一个二次齐次多项式

             f ( x_{1},x_{2},...,x_{n} ) = a_{11}x_{1}^{2}+2a_{12}x_{1}x_{2}+2a_{13}x_{1}x_{3}+\cdots +2a_{1n}x_{1}x_{n}

                                                                 +a_{22}x_{2}^{2}+2a_{23}x_{2}x_{3}+\cdots +2a_{2n}x_{2}x_{n}

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​     +\cdots +a_{nn}x_{n}^{2}                       ( I )

称为 n 个变量的二次型,系数均为实数时,称为 n 元实二次型

        若令 a_{ij}=a_{ji},i< j ,则 2a_{ij}x_{i}x_{j}=a_{ij}x_{i}x_{j}+a_{ji}x_{j}x_{i} ,那么二次型 ( I ) 可以写成矩阵形式:

f(x_{1},x_{2},...,x_{n})=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_{i}x_{j}=[x_{1},x_{2},...,x_{n}]\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n}\\ a_{21} & a_{22} & \cdots & a_{2n}\\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2}\\ \vdots \\ x_{n} \end{bmatrix}=x^{T}Ax

其中 A对称矩阵,称为二次型 f 的对应矩阵。

        若二次型 f(x_{1},x_{2},...,x_{n}) 只有平方项,没有混合项(即混合项的系数全为零),即

f(x_{1},x_{2},...,x_{n})=x^{T}Ax=a_{1}x_{1}^{2}+a_{2}x_{2}^{2}+\cdots +a_{n}x_{n}^{2}

则称二次型为标准形(又称平方和)。

        在二次型的标准形中,若平方项的系数 a_{i} 只是 1,-1,0,即

f(x_{1},x_{2},...,x_{n})=x^{T}Ax=x_{1}^{2}+x_{2}^{2}+\cdots +x_{p}^{2}-x_{p-1}^{2}-\cdots -x_{p+q}^{2}

则称为二次型的规范形(系数中 1 的个数是 p 个,-1 的个数是 q 个,0 的个数是 n - ( p + q ) 个)。

        在二次型 x^{T}Ax 矩阵 A 的秩称为二次型的秩。

        (合同)设 A , B 是两个 n 阶方阵,若存在可逆阵 C ,使得 C^{T}AC=B ,则称 A 合同于 B ,记成 A\simeq B

正定二次型

        (正定)若对于任意的非零向量 x=(x_{1},x_{2},...,x_{n})^{T} ,恒有

f(x_{1},x_{2},...,x_{n})=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}x_{i}x_{j}=x^{T}Ax>0

所以二次型 f 为正定二次型,对应矩阵为正定矩阵

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值