首先,使用conda 创建虚环境(环境名和python版本自定):
conda create -n mamba python=3.10
然后激活虚环境,根据mamba的要求,我们安装版本大于1.12的pytorch。因为我的cuda 是12.3的因此安装了cuda12.1的torch2.3.1。请根据自己情况选择对应torch版本!!!(PyTorch)(cuda使用nvcc -V查看)
conda activate mamba
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
然后,如果根据mamba给出的指令进行安装,大概率会因为网络问题无法成功。因此到下面两个网址直接下载对应安装包。
请注意,这里的一定要选对版本,
比如causal_conv1d-1.4.0+cu118torch2.3cxx11abiFALSE-cp310-linux_x86_64.whl
这里的-1.4.0是causal_conv1d的版本,cu118要cuda版本大于等于11.8,torch2.3要对应上你的torch版本,cp310指的是python3.10。同理mamba_ssm也一样。
选中后复制链接使用wget下载(如果wget下载不下来,建议直接手动下载上传至服务器):
wget https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
wget https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
下载完成后使用pip进行安装(如果比较慢的话,可以在后面加个清华源):
pip install causal_conv1d-1.4.0+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install mamba_ssm-2.2.2+cu118torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
至此,安装成功!