MapReduce

1. MapReduce定义

 2. MapReduce优点

  3. MapReduce缺点

4. MapReduce编程规范

5. 流程示意图

6. Shuffle机制

7. Shuffle过程详解 

1.MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中

2.从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件

3.多个溢出文件会被合并成大的溢出文件

4.在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序

5.ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据

6.ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)

7.合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

8. Shuffle缓冲区

        Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整,参数:io.sort.mb默认100M。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值