一维前缀和、一维差分

一维前缀和

前缀和 就是 数列求和 区间为[L,R]

前缀和数组的第一项和原数组的第一项是相等的。

前缀和数组的第 i 项 = 原数组的 0 到 i-1 项的和 + 原数组的第 i 项。

即:sum[i]=a[0]+a[1]+a[2]+a[3]+………+a[i];

代码:

#include <iostream>

using namespace std;

int get_sum(int* sum, int L, int R) {
	if (L <= 0) return sum[R]; 
	return sum[R] - sum[L - 1];
}

int main() {
	int n, q;//数列长度为n q个询问(询问区间为[L,R]的前缀和) 

	cin >> n >> q;

	int* a = new int[n];

	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}

	// 构建前缀和数组
	int* sum = new int [n];

	sum[0] = a[0];
	for (int i = 1; i < n; i++) {
		sum[i] = sum[i - 1] + a[i];
	}

	for (int i = 0; i < n; i++) {
		cout << sum[i] << "   "; //输出的是数列[0,i]的和 
	}

	cout << endl;
	// 查询 L - R 区间和

	while (q--) {
		cout << "\n请输入查询的 L 和 R" << endl;
		int L;
		int R;
		cin >> L >> R;

		cout << get_sum(sum, L, R);
	}

	return 0;
}

一维差分

假设有原数组 a[ ]={a1,a2,a3,...an},现构造出一个数组 b[ ]={b1,b2,b3,...bn},使得ai=b1+b2+..bi,那么 b[ ] 就称为 a[ ] 的差分,a[ ] 就称为 b[ ] 的前缀和。

 差 分 就是前缀和的逆运算(a[i]=b[1]+b[2]+…b[i])

 差 分 的 作 用 就是快速实现将数组部分加上一个数

代码:

#include <iostream>
using namespace std;

void mode(int* d, int L, int R, int e) {
	d[L] += e;
	d[R + 1] -= e;
}

int main() {
	int n, m;

	cin >> n >> m;//数列长度为n  m个操作([L,R]+e) 

	int* a = new int[n+1];

	for (int i = 0; i < n; i++) {
		cin >> a[i];
	}

	int* d = new int[n+1];
	// 构建差分数列

	// 在差分序列上进行操作

	// 求操作后差分序列的前缀和

	for (int i = 0; i < n; i++) {
		d[i] = 0;
	}


	while (m--) {
		cout << "操作的 L 和 R 以及 数" << endl;
		int L;
		int R;
		int e;

		cin >> L >> R >> e;
		mode(d, L, R, e);
		
	}

	// 构建前缀和数组
	int* sum = new int[n + 1];

	sum[0] = d[0];
	for (int i = 1; i < n; i++) {
		sum[i] = sum[i - 1] + d[i];
	}

	for (int i = 0; i < n; i++) {
		a[i] += sum[i];
		cout << a[i] << " ";
	}



	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值