一维前缀和
前缀和 就是 数列求和 区间为[L,R]
前缀和数组的第一项和原数组的第一项是相等的。
前缀和数组的第 i 项 = 原数组的 0 到 i-1 项的和 + 原数组的第 i 项。
即:sum[i]=a[0]+a[1]+a[2]+a[3]+………+a[i];
代码:
#include <iostream>
using namespace std;
int get_sum(int* sum, int L, int R) {
if (L <= 0) return sum[R];
return sum[R] - sum[L - 1];
}
int main() {
int n, q;//数列长度为n q个询问(询问区间为[L,R]的前缀和)
cin >> n >> q;
int* a = new int[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
// 构建前缀和数组
int* sum = new int [n];
sum[0] = a[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + a[i];
}
for (int i = 0; i < n; i++) {
cout << sum[i] << " "; //输出的是数列[0,i]的和
}
cout << endl;
// 查询 L - R 区间和
while (q--) {
cout << "\n请输入查询的 L 和 R" << endl;
int L;
int R;
cin >> L >> R;
cout << get_sum(sum, L, R);
}
return 0;
}
一维差分
假设有原数组 a[ ]={a1,a2,a3,...an},现构造出一个数组 b[ ]={b1,b2,b3,...bn},使得ai=b1+b2+..bi,那么 b[ ] 就称为 a[ ] 的差分,a[ ] 就称为 b[ ] 的前缀和。
差 分 就是前缀和的逆运算(a[i]=b[1]+b[2]+…b[i])
差 分 的 作 用 就是快速实现将数组部分加上一个数
代码:
#include <iostream>
using namespace std;
void mode(int* d, int L, int R, int e) {
d[L] += e;
d[R + 1] -= e;
}
int main() {
int n, m;
cin >> n >> m;//数列长度为n m个操作([L,R]+e)
int* a = new int[n+1];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int* d = new int[n+1];
// 构建差分数列
// 在差分序列上进行操作
// 求操作后差分序列的前缀和
for (int i = 0; i < n; i++) {
d[i] = 0;
}
while (m--) {
cout << "操作的 L 和 R 以及 数" << endl;
int L;
int R;
int e;
cin >> L >> R >> e;
mode(d, L, R, e);
}
// 构建前缀和数组
int* sum = new int[n + 1];
sum[0] = d[0];
for (int i = 1; i < n; i++) {
sum[i] = sum[i - 1] + d[i];
}
for (int i = 0; i < n; i++) {
a[i] += sum[i];
cout << a[i] << " ";
}
return 0;
}