dp (一)

线性DP(动态规划)

  • 数字三角形

题目描述

给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。

        7
      3   8
    8   1   0
  2   7   4   4
4   5   2   6   5

题解:

#include<iostream>
using namespace std;
const int N=510;
int n,f[N][N];
int main()
{
	cin>>n;
	
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=i;j++)
		cin>>f[i][j];   //用来存三角形
	}
	int a[N][N];   //声明一个新数组
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		a[i][j]=0;   //初始化 边界为0
	}
	
	for(int j=1;j<=n;j++)
	{
		a[n][j]=f[n][j];	
	}
	
	for(int i=n-1;i>0;i--)
	{
		for(int j=1;j<=i;j++)
		{
			a[i][j]=max(a[i+1][j],a[i+1][j+1])+f[i][j];  //即在选择往下走或往右走 时 通过判断a[i+1][j],a[i+1][j+1]的大小来决定 则a[1][1]为所走路径上的数字最大和
		}
	}
	cout<<a[1][1];
	return 0;
 } 
  • 最长上升子序列

题目描述

给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。

输出一个整数,表示最大长度。

样例 #1

7
3 1 2 1 8 5 6
4
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
int a[N],b[N];
int main()
{
	int n;
	cin>>n;
	
	for(int i=0;i<n;i++)
	{
		cin>>a[i];
	}
	int ans=-1;
	for(int i=0;i<n;i++)
	{	b[i]=1; //标记
		for(int j=0;j<i;j++){
			if(a[i]>a[j]){
				b[i]=max(b[i],b[j]+1);
			}
		}
		
	}
	for(int i=0;i<n-1;i++)
	{
		ans=(b[i],b[i+1]);
	}
	cout<<ans;
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值