线性DP(动态规划)
题目描述
给定一个如下图所示的数字三角形,从顶部出发,在每一结点可以选择移动至其左下方的结点或移动至其右下方的结点,一直走到底层,要求找出一条路径,使路径上的数字的和最大。
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
题解:
#include<iostream>
using namespace std;
const int N=510;
int n,f[N][N];
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
cin>>f[i][j]; //用来存三角形
}
int a[N][N]; //声明一个新数组
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
a[i][j]=0; //初始化 边界为0
}
for(int j=1;j<=n;j++)
{
a[n][j]=f[n][j];
}
for(int i=n-1;i>0;i--)
{
for(int j=1;j<=i;j++)
{
a[i][j]=max(a[i+1][j],a[i+1][j+1])+f[i][j]; //即在选择往下走或往右走 时 通过判断a[i+1][j],a[i+1][j+1]的大小来决定 则a[1][1]为所走路径上的数字最大和
}
}
cout<<a[1][1];
return 0;
}
题目描述
给定一个长度为 N 的数列,求数值严格单调递增的子序列的长度最长是多少。
输出一个整数,表示最大长度。
样例 #1
7
3 1 2 1 8 5 6
4
#include<bits/stdc++.h>
using namespace std;
const int N=1100;
int a[N],b[N];
int main()
{
int n;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
int ans=-1;
for(int i=0;i<n;i++)
{ b[i]=1; //标记
for(int j=0;j<i;j++){
if(a[i]>a[j]){
b[i]=max(b[i],b[j]+1);
}
}
}
for(int i=0;i<n-1;i++)
{
ans=(b[i],b[i+1]);
}
cout<<ans;
return 0;
}