如果想了解CNN,推荐 CNN 卷积神经网络(CNN)入门讲解 - 知乎
参考B站视频 李宏毅机器学习-RNN网络 和吴恩达
一、引出RNN
假设出现下面两种情况,显然第一句中Taipei是目的地,第二句中是出发地。当输入都是Taipei时,我们的输出要么都是目的地的概率高,要么都是出发地的概率高,出现不了一个是出发地的概率高,一个是目的地的概率高。因此,我们希望神经网络能有记忆力,记得在第一句中看到Taipei之前,看到过arrive,在第二句在看到Taipei之前,看到过leave,就可以根据上下文判断出来是出发地还是目的地,产生不同的输出。由此引出了RNN。
二、介绍RNN
一个简单的循环神经网络如下,它由一个输入层,一个隐藏层,一个输出层组成。然后我们可以看到在Hidden Layer 有一个箭头表示数据的循环更新, 这就是RNN中的记忆功能实现。如下图,绿色的隐藏层输出会被存储到蓝色的记忆单元中即进行值的更新,初始的记忆单元一般为0向量。这个输出的产生也不仅仅要考虑输入,还要考虑记忆单元。
Example
开始整个流程之前,需要构造将store置初始值,一般选择零向量。假定权重都为1,而且激活函数都是线性函数,也没哟偏置。如下图:
隐藏层输出(即绿色圆):y11=1*1+0+1*1+0=2 同理y12=2
输出层: y21=2+2=4同理y22=4
我们