RNN和LSTM

本文介绍了循环神经网络(RNN)的基础概念,如何处理长期依赖问题,以及LSTM(长短期记忆)的诞生及其内部机制。重点讲解了LSTM的门控机制和GRU(门控循环单元)的简化版,适合初学者理解记忆网络在自然语言处理中的应用。
摘要由CSDN通过智能技术生成

如果想了解CNN,推荐     CNN     卷积神经网络(CNN)入门讲解 - 知乎

参考B站视频  李宏毅机器学习-RNN网络   和吴恩达

一、引出RNN

        假设出现下面两种情况,显然第一句中Taipei是目的地,第二句中是出发地。当输入都是Taipei时,我们的输出要么都是目的地的概率高,要么都是出发地的概率高,出现不了一个是出发地的概率高,一个是目的地的概率高。因此,我们希望神经网络能有记忆力,记得在第一句中看到Taipei之前,看到过arrive,在第二句在看到Taipei之前,看到过leave,就可以根据上下文判断出来是出发地还是目的地,产生不同的输出。由此引出了RNN。

 二、介绍RNN

        一个简单的循环神经网络如下,它由一个输入层,一个隐藏层,一个输出层组成。然后我们可以看到在Hidden Layer 有一个箭头表示数据的循环更新, 这就是RNN中的记忆功能实现。如下图,绿色的隐藏层输出会被存储到蓝色的记忆单元中即进行值的更新,初始的记忆单元一般为0向量。这个输出的产生也不仅仅要考虑输入,还要考虑记忆单元。

     

 Example

开始整个流程之前,需要构造将store置初始值,一般选择零向量。假定权重都为1,而且激活函数都是线性函数,也没哟偏置。如下图:

隐藏层输出(即绿色圆):y11=1*1+0+1*1+0=2  同理y12=2

输出层: y21=2+2=4同理y22=4

我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值