题目描述
给定一个已按照 非递减顺序排列 的整数数组numbers ,请你从数组中找出两个数满足相加之和等于目标数target 。
函数应该以长度为 2 的整数数组的形式返回这两个数的下标值。numbers 的下标 从 1 开始计数 ,所以答案数组应当满足 1 <= answer[0] < answer[1] <= numbers.length 。
你可以假设每个输入 只对应唯一的答案 ,而且你 不可以 重复使用相同的元素。
示例 1:
输入:numbers = [2,7,11,15], target = 9
输出:[1,2]
解释:2 与 7 之和等于目标数 9 。因此 index1 = 1, index2 = 2 。
示例 2:
输入:numbers = [2,3,4], target = 6
输出:[1,3]
示例 3:
输入:numbers = [-1,0], target = -1
输出:[1,2]
提示:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers 按 非递减顺序 排列
-1000 <= target <= 1000
仅存在一个有效答案
思路 & CODE
1. 哈希
似乎这种查找元素的题目都能用哈希,但一般不是最优解,比较需要开辟额外的空间
首先把元素全部放到map里,之后再次遍历数组,只要map.get(target-当前元素)
不为null,就把获取当前元素的索引。当然题目有要求i < j
,所以这里还需要判断一下元素大小再返回
public int[] twoSum1(int[] numbers, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < numbers.length; i++) {
map.put(numbers[i], i);
}
for (int i = 0; i < numbers.length; i++) {
Integer index = map.get(target - numbers[i]);
if (index != null) {
if (i > index) {
return new int[]{index+1, i+1};
} else {
return new int[]{i+1, index+1};
}
}
}
return new int[]{-1, -1};
}
时间复杂度O(n),空间复杂度O(n)
2. 二分查找
由于题目给了条件,给的数组是递增的。那么我们遍历到一个元素,用target-这个元素
获得另一个元素,再在该元素后面二分查找另一个元素即可。
public int[] twoSum2(int[] numbers, int target) {
for (int i = 0; i < numbers.length; i++) {
int left = i + 1;
int right = numbers.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (numbers[i] + numbers[mid] == target) {
return new int[]{i + 1, mid + 1};
} else if (numbers[i] + numbers[mid] < target) {
left = mid + 1;
} else if (numbers[i] + numbers[mid] > target) {
right = mid - 1;
}
}
}
return new int[]{-1, -1};
}
遍历需要n
的时间,二分需要logn
,所以时间复杂度为O(logn)
3. 双指针
写这道题目的时候就看了一下tag,虽然看到了有双指针,但是代入想了半天还是没想到解法。
看了题解,指针放在首位,每次循环计算首位指针元素和,小于target
就把左指针右移;大于target
就把右指针左移。while的条件是left < right
。知道首尾指针和等于target就返回索引位置
这种解法让人疑惑的是,这样移动指针会不会漏掉元素?
看了题解发现了一个绝妙的思路!
就不重复记录了,可以看下方链接;简而言之,这道题里所有的元素组合都可以放到一个矩形里,这个矩形里有n^2个小矩形,每个小矩形就是一种元素组合。暴力循环每次可以排除掉一个小矩形,而双指针每次可以排除掉一行(列)的矩形
public int[] twoSum3(int[] numbers, int target) {
int left = 0;
int right = numbers.length - 1;
while (left < right) {
if (numbers[left] + numbers[right] == target) {
return new int[]{left + 1, right + 1};
} else if (numbers[left] + numbers[right] > target) {
right--;
} else if (numbers[left] + numbers[right] < target) {
left++;
}
}
return new int[]{-1, -1};
}