数据筛选 query 函数介绍
query 函数的一般用法如下:
df.query('expression')
文中的代码是在 Jupyter Notebook 中运行的(也可以是其他 IDE),在开始之前,先创建一份数据,供后续使用:
import pandas as pd
data = {
'brand':['Python 数 据 之 道 ',' 价 值 前 瞻 ',' 菜 鸟 数 据 之 道 ','Python','Java'],
'A':[10,2,5,20,16],
'B':[4,6,8,12,10],
'C':[8,12,18,8,2],
'D':[6,18,14,6,12],
'till years':[4,1,1,30,30]
}
df = pd.DataFrame(data=data)
df
常用方法
筛选 “brand” 列中值为 “Python 数据之道” 的行,如下:
df.query('brand == "Python 数 据 之 道 "')
上面用 query 函数筛选数据,用下面的方法也是可以实现的:
df[df['brand']=="Python 数 据 之 道 "]
通过数学表达式筛选
除了直接通过等于某个值来筛选,query 函数还支持通过数学表达式来进行数据筛选,包括 >、<、+、-、*、/ 等。
通过变量筛选
在程序比较长的时候,经常会使用变量来作为筛选条件,query 函数在使用变量作为判断标准时,通过在变量前面添加 @ 符号来实现,示例如下:
name = 'Python 数 据 之 道 '
df.query('brand == @name')
列表数据筛选
当需要在某列中筛选多个符合要求的值的时候,可以通过列表(list)来实现,示例如下:
# 需 要 注 意 下 双 引 号 和 单 引 号 的 分 开 使 用
df.query('brand in ["Python 数 据 之 道 "," 价 值 前 瞻 "]')
多条件筛选
有很多情况下,咱们需要通过多个条件来筛选数据,query 函数支持多种条件的组合,
• 两者都需要满足的并列条件使用符号 &, 或单词 and
• 只需要满足其中之一的条件使用符号 |, 或单词 or
df.query('brand in ["Python 数 据 之 道 "," 价 值 前 瞻 "] & A>3')
列名称有空格的情况
当 dataframe 的列名称中有空格或其他特殊符号的时候,需要使用 反引号(backtick mark),即键盘 ESC 键下面的按键 (就是键盘上第二排第一个按键,有 ‘~’ 这个符号的按键) 来将列名包裹起来,示例如下:
df.query("`till years` < 5")
筛选后选取数据列
df.query('A+B <= C+D')[['brand','A','C']]