转载自AI Studio
项目链接https://aistudio.baidu.com/aistudio/projectdetail/3487194
电机异音AI诊断
本项目为飞桨领航团AI达人创造营第二期作业。
项目背景
在电机生产线上普遍采用人工听音的方法分辨良、次品,不仅成本高,而且重复、单调的听音工作极易引起人员疲劳,容易出现误判,若个别不良品混入整批成品中,会给工厂带来严重经济损失,甚至严重影响产品声誉。
(数据对应的比赛)本次大赛要求参赛者基于加速度传感器采集的振动信号,利用机器学习、深度学习等人工智能技术,设计智能检验的算法,要求算法对故障电机不能有漏识别,在召回100%的情况下,尽量提高预测准确率,以达到替代人工质检的目的。
数据说明
文件清单:
- Motor_tain.zip:用于训练的采集数据,其中,文件夹“正样本”包含30个异常电机的数据样本,文件夹“负样本”包含500个正常电机的数据样本;
- Motor_testP.zip:用于测试的采集数据,包含500个电机的数据样本;
文件说明:采集数据时是分别对电机正转、反转时的振动信号进行采集。也就是说每台电机有两条数据,其中F代表正转,B代表反转。每条数据包含两路振动信号,数据文件命名规则:编号_旋转方向.csv。比赛链接:http://jingsai.julyedu.com/v/25820185621432447/dataset.jhtml
项目方案
每个样本包含F和B两份csv,每个csv文件包含79999×2个数据。使用多个全连接层进行预测。使用的损失函数为交叉熵。
模型如下:
处理方案
- 重采样:针对数据不平衡,复制多份正向样本,从而训练时达到类别均衡采样的效果
- 修改损失:针对题目要求的保证TP最大,尽可能减小FP的问题,将label==1的损失权重设定为1.1。
代码
预处理
! unzip -oq data/data31822/Motor_tain.zip
! unzip -oq data/data31822/Motor_testP.zip
import os
train_pos_dir='Motor_tain/╒¤╤∙▒╛/'
train_neg_dir='Motor_tain/╕║╤∙▒╛/'
# 生成三份文件便于按照类别比例划分
with open('train_pos.txt','w') as f:
for item in list(set([item[:len(item)-6] for item in os.listdir(train_pos_dir)])):
if '.ipynb' not in item:
f.write(train_pos_dir+item+'\t1\n')
with open('train_neg.txt','w') as f:
for item in list(set([item[:len(item)-6] for item in os.listdir(train_neg_dir)])):
if '.ipynb' not in item:
f.write(train_neg_dir+item+'\t0\n')
with open('train.txt','w') as f:
for item in list(set([item[:len(item)-6] for item in os.listdir(train_pos_dir)])):
if '.ipynb' not in item:
for i in range(int(500/30)):
f.write(train_pos_dir+item+'\t1\n')
for item in list(set([item[:len(item)-6] for item in os.listdir(train_neg_dir)])):
if '.ipynb' not in item:
f.write(train_neg_dir+item+'\t0\n')
构造读取器
import paddle
import numpy as np
import paddle.vision.transforms as T
from PIL import Image
import pandas as pd
class MyDateset(paddle.io.Dataset):
def __init__(self,txt_dir):
super(MyDateset, self).__init__()
self.path=[]
self.label=[]
with open(txt_dir,'r') as f:
for line in f.readlines():
self.path.append(line.split('\t')[0])
self.label.append(line.split('\t')[1][0])
def __getitem__(self, index):
path = self.path[index]
label = int(self.label[index])
F=pd.read_csv(path+'_F.csv')
B=pd.read_csv(path+'_B.csv')
F=paddle.to_tensor(F.values).flatten(0).astype('float32')
B=paddle.to_tensor(B.values).flatten(0).astype('float32')
label = np.array(label).astype('int64')
return F,B,label
def __len__(self):
return len(self.label)
train_dataset=MyDateset('train.txt')
train_dataloader = paddle.io.DataLoader(
train_dataset,
batch_size=16,
shuffle=True,
drop_last=False)
for step, data in enumerate(train_dataloader):
F, B, label = data
print(step, F.shape, B.shape, label.shape)
break
0 [16, 159998] [16, 159998] [16]
构造网络模型
class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet,self).__init__()
self.fc_F = paddle.nn.Linear(in_features=159998, out_features=2000)
self.fc_B = paddle.nn.Linear(in_features=159998, out_features=2000)
self.fc_1 = paddle.nn.Linear(in_features=4000, out_features=1000)
self.fc_2 = paddle.nn.Linear(in_features=1000, out_features=200)
self.fc_3 = paddle.nn.Linear(in_features=200, out_features=2)
def forward(self,F,B):
F = self.fc_F(F)
B = self.fc_B(B)
x = paddle.concat([F,B],axis=-1)
x = self.fc_1(x)
# x = paddle.nn.functional.relu(x)
x = self.fc_2(x)
# x = paddle.nn.functional.relu(x)
x = self.fc_3(x)
return x
训练
model = MyNet()
model.train()
max_epoch=10
opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
now_step=0
for epoch in range(max_epoch):
for step, data in enumerate(train_dataloader):
now_step+=1
F, B, label = data
pre = model(F,B)
loss = paddle.nn.functional.cross_entropy(pre,label,weight=paddle.to_tensor([1,1.1]),reduction='mean')
loss.backward()
opt.step()
opt.clear_gradients()
if now_step%100==0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch, step, loss.mean().numpy()))
paddle.save(model.state_dict(), 'model.pdparams')
epoch: 1, batch: 37, loss is: [0.631444]
epoch: 3, batch: 13, loss is: [0.63104683]
epoch: 4, batch: 51, loss is: [0.63319224]
epoch: 6, batch: 27, loss is: [0.5660453]
epoch: 8, batch: 3, loss is: [0.5968682]
epoch: 9, batch: 41, loss is: [0.5927209]
查看混淆矩阵
格式为
预测为0 | 预测为1 | |
---|---|---|
实际为0 | value | value |
实际为1 | value | value |
# mydict = paddle.load("model_1.pdparams")
# model.set_state_dict(mydict)
record=np.zeros([2,2])
for i in range(len(train_dataset)):
F,B,label=train_dataset[i]
pre=model(F,B)
# print(f'real label: {label} pre label: {np.argmax(pre.numpy())}')
record[label.tolist()][np.argmax(pre.numpy())]+=1
record
array([[455., 45.],
[ 0., 480.]])
总结
本项目使用了极简方式构造了一个电机异音AI诊断模型,最终结果表明模型可以将全部正样本(异常)都判断正确,并且负样本的占比为9%。除去模型效果的因素外,本项目有以下不足,可以继续改进:
- 本项目构造了一个简单的全连接层网络模型,但由于数据量较大,需要在第一个全连接层尽可能地压缩节点数。可以尝试使用卷积替换全连接层。
- 由于样本量较少(正向样本仅30个),仅设置了训练集,没有设定验证集。
个人介绍
作者:笠雨聆月
兴趣:目前从最容易上手的cv进行学习,也在尝试nlp,gan等等,各种方向来者不拒
个人主页:https://aistudio.baidu.com/aistudio/personalcenter/thirdview/608082
请点击此处查看本环境基本用法.
Please click here for more detailed instructions.