鉴于昨天没有看密炼,今天的工作就先从密炼开始,主要包含了两件事情,一个是弄清楚阿伦尼兹方程的拟合方法,其二需要弄清楚文件的读取。
密炼:
从文中可以很明显的看出来,阿伦尼兹方程只是对粘度方程进行了一个修正。粘度本身的值是根据剪切速率的变化而变化的,粘度反应的是所需剪切应力的大小。弹性展现的规律是受力规律和物体的形状相关。粘性展现的规律是受力和物体变形的速率相关。从微观上解释就是,弹性物体,分子间本身不变动,无论是怎样变形到当前状态的,受力总是相同的。而粘性物体,因为随着接受能量的速率变化,分子间的连接会发生变化,所以受力的规律与变形的速率相关。在此基础上的黏弹性就是受力既和本身的变形相关,也和此前变形的速率相关。
BC本构描述的就是粘性变化的趋势:
在几个参数确定了以后,该方程本身是一个幂函数,是一个单调递减的函数,函数变化的幅度是由n决定的。剪切速率是平方级别的,一定程度上会加剧,递减的速率。那么如果是我要拟合出这个方程,需要的未知数包含了0和无穷时的粘度,松弛时间,还有bc的指数。
而阿伦尼兹方程是明显的修正,且其本质是e为底数的指数函数,且这个指数会在基础温度附近进行波动,但如果温度波动范围过大,我觉得此函数虽然表现的变化幅度不大,但与真实情况应该已经不相符了。
polymat的使用:
可以看到polymat的基本作用是对材料的本构进行设置,其应该包含了基本的本构模型,并且对本构模型有拟合的功能。
当我们假定材料为考虑温度的牛顿流体,并选择为BC本构时,其仍然可以对以下参数进行一些设置,我猜想这些设置是使用材料直接带入polyflow(所以暂不考虑)。
此时我们考虑的重点应该是两个方程是如何拟合的,BC本构其实就是固定温度下,粘度和剪切速率的关系,只需要两者足够多的数据就可以了。而阿伦尼兹在剪切速率固定的情况下,考虑粘度和温度。所以两者应该是提供不同温度下,粘度和剪切速率的方程。
交通算法:
其实最好的评价方法就是运行时间,比如一个城市里每天有一百辆车在运行,统计在车路协同状态下100辆车的运行时间 ,和没有车路协同情况下100辆车的运行时间,那么车路协同究竟影响了运行时间的哪些方面,需要考虑车辆运行工况。