有依赖的背包问题

有 N 个物品和一个容量是 V 的背包。

物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。

如下图所示:

如果选择物品5,则必须选择物品1和2。这是因为2是5的父节点,1是2的父节点。

每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V 用空格隔开,分别表示物品个数和背包容量。

接下来有 N 行数据,每行数据表示一个物品。
第 i 行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。 数据保证所有物品构成一棵树。

输出格式

输出一个整数,表示最大价值。

数据范围

1≤N,V≤100
1≤vi,wi≤100

父节点编号范围:

  • 内部结点:1≤pi≤N;
  • 根节点 pi=−1;

输入样例

5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2

输出样例:

11

 代码如下:

#include<bits/stdc++.h>
using namespace std;
int n,v;//物品数量和体积 
const int N=105;
int dp[N][N],V[N],W[N];
vector<int>q[105];//建立队列按层存储树状物品信息 
int root;//记录根节点 
void dfs(int x)
{
	//首先对背包进行初始化 
	for(int j=V[x];j<=v;j++)//因为题目要求背包至少要有根节点处的物品 
		dp[x][j]=W[x];//所以 将背包容量大于 root 物体体积的所有可能,总价值变为 W[x] 
	for(int i=0;i<q[x].size();i++)//遍历树的每一层 
	{
		int y=q[x][i];//y 代表其子树 
		dfs(y);
		for(int j=v;j>=V[x];j--)//循环背包容量 
		{
			for(int k=0;j-k>=V[x];k++)//循环背包决策(保证背包剩余容量大于根节点物品体积) 
			{
				//比较装入该子树与不装的价值,取大 
				dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[y][k]);
			}
		}
	}
}
int main()
{
	cin>>n>>v;
	for(int i=1;i<=n;i++)
	{
		int pi;//记录层数 
		cin>>V[i]>>W[i]>>pi;
		if(pi==-1)//-1 代表为树的根节点 
			root=i;
		else//其余按层存入队列尾 
		{
			q[pi].push_back(i);
		}
	}
	dfs(root);//深搜遍历 
	cout<<dp[root][v];//输出根节点是root,容量为 v 的背包价值 
	return 0;
}

这道题小编写的磕磕绊绊,煞是为难,各位看官老爷如果觉得哪里不对,还请评论留言。 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值