有 N 个物品和一个容量是 V 的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。
如下图所示:
如果选择物品5,则必须选择物品1和2。这是因为2是5的父节点,1是2的父节点。
每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V 用空格隔开,分别表示物品个数和背包容量。
接下来有 N 行数据,每行数据表示一个物品。
第 i 行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。 数据保证所有物品构成一棵树。
输出格式
输出一个整数,表示最大价值。
数据范围
1≤N,V≤100
1≤vi,wi≤100
父节点编号范围:
- 内部结点:1≤pi≤N;
- 根节点 pi=−1;
输入样例
5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2
输出样例:
11
代码如下:
#include<bits/stdc++.h>
using namespace std;
int n,v;//物品数量和体积
const int N=105;
int dp[N][N],V[N],W[N];
vector<int>q[105];//建立队列按层存储树状物品信息
int root;//记录根节点
void dfs(int x)
{
//首先对背包进行初始化
for(int j=V[x];j<=v;j++)//因为题目要求背包至少要有根节点处的物品
dp[x][j]=W[x];//所以 将背包容量大于 root 物体体积的所有可能,总价值变为 W[x]
for(int i=0;i<q[x].size();i++)//遍历树的每一层
{
int y=q[x][i];//y 代表其子树
dfs(y);
for(int j=v;j>=V[x];j--)//循环背包容量
{
for(int k=0;j-k>=V[x];k++)//循环背包决策(保证背包剩余容量大于根节点物品体积)
{
//比较装入该子树与不装的价值,取大
dp[x][j]=max(dp[x][j],dp[x][j-k]+dp[y][k]);
}
}
}
}
int main()
{
cin>>n>>v;
for(int i=1;i<=n;i++)
{
int pi;//记录层数
cin>>V[i]>>W[i]>>pi;
if(pi==-1)//-1 代表为树的根节点
root=i;
else//其余按层存入队列尾
{
q[pi].push_back(i);
}
}
dfs(root);//深搜遍历
cout<<dp[root][v];//输出根节点是root,容量为 v 的背包价值
return 0;
}
这道题小编写的磕磕绊绊,煞是为难,各位看官老爷如果觉得哪里不对,还请评论留言。