1,题目
一个正整数 N 的因子中可能存在若干连续的数字。例如 630 可以分解为 3×5×6×7,其中 5、6、7 就是 3 个连续的数字。给定任一正整数 N,要求编写程序求出最长连续因子的个数,并输出最小的连续因子序列。
输入格式:
输入在一行中给出一个正整数 N(1<N<2
31
)。输出格式:
首先在第 1 行输出最长连续因子的个数;然后在第 2 行中按 因子1因子2……*因子k 的格式输出最小的连续因子序列,其中因子按递增顺序输出,1 不算在内。输入样例:
630
输出样例:
3
567
2,sqrt函数在math函数库;
3,遍历范围是2到n^(1/2);可以减短计算机处理的时间
for(i=2;i<sqrt(n);i++)
4,没有想到如何找出最长连续因子的个数以及最小的连续因子序列
如果n不是素数
5,最长连续因子的个数
while(a%j==0){//只要a%j==0,就证明j是a的因子
a=a/j;//能整除就a=a/j。
j++;//j++,因子加1,判断是否还能整除。
count++;//暂时容器+1.
}
if(c_count<count){//每次for循环都会得到一个count,让count与c_count相比较。哪个大要哪个。
start=i;//连续因子的起点赋值为i。
c_count=count;
}
}
if(c_count){
printf("%d\n",c_count);
6,最小的连续因子序列
for(i=0;i<c_count;i++){
printf("%d",start+i);//遍历输出连续因子。
if(i!=c_count-1){
printf("*");
}
}
如果n是素数
printf("%d\n%d",1,n);//输入的数为素数时,输出最小的连续序列可以省掉1,也就是只剩n。
错误的思路
/*
输入该输入的前提之后,使用循环从2开始试一试到power(n,1/x)
取pow()的左舍并取左右邻的数字,使x个数相乘判断是否等于n;
取pow()的右进并取左右邻的数字,使x个数相乘判断是否等于n;
到底如何输出
*/
#include<stdio.h>
#include<math.h>
int main()
{
int n,i,x,t1=1,t2=1;
scanf("%d",&n);
int k;
k=pow(n,1/x);
int p,q;
p=k;
q=p+1;
for(i=2;i<k;i++)
{
for(i=2;i<x;i++){
t1*=p;}
for(i=2;i<x+1;i++){
t2*=q;}
}
if(t1==n)
printf("%d\n",);
}
正确的思路
#include<stdio.h>
#include<string.h>
#include<math.h>
int main() {
int i, j, n;
int c_count = 0;
int start = 0;
scanf("%d", &n);
for (i = 2; i < sqrt(n); i++) {
int count = 0;
int a = n;
int j = i;
while (a % j == 0) {
a = a / j;
j++;
count++;
}
if (c_count < count) {
start = i;
c_count = count;
}
}
if (c_count) {
printf("%d\n", c_count);
for (i = 0; i < c_count; i++) {
printf("%d", start + i);
if (i != c_count - 1) {
printf("*");
}
}
} else {
printf("%d\n%d", 1, n);
}
return 0;
}