题意 : 两个操作 :
1. 给定 a b a 和 b 连一条边
2. 给 a 上加一个权值所有和 a 直接或间接相连的边都加上这个权值
第一个操作很简单就是维护并查集的基本操作 当 a != b 是 p[a] = b
第一个操作会将所有的点变成一棵树的形式 然后当给一个点上加一个值的时候 就相当于这个树的根节点
加了一个权值 在后面要求每一个点的权值时候 如果这个点不是根节点的话 肯定是当前点的权值加上其所属的连通块根节点的权值 d[i] + d[find(i)]
注意 :在合并树的时候如果直接合并的话会出现 当前连通块内部所有联通块的点 都会加上合并后的那个连通块根节点的值,所以要用 d[a] - d[b]
还有就是路径压缩的时候常用的就是求当前点到根节点的距离
那就是 d[x] += d[p[x]] 在每一次回溯的时候当前的点都会加上父节点的权值 这样就可以保证每一个在当前连通块里面的点都会加上根节点的值
代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n , m;
int p[N];
int d[N];
int find(int x)
{
if(!(x == p[x] || p[p[x]] == p[x]))
{
int t = find(p[x]);
d[x] += d[p[x]];
p[x] = t;
}
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 1 ; i <= n ; i ++) p[i] = i;
for(int i = 0 ; i < m ; i ++)
{
int op , a , b;
cin >> op >> a >> b;
if(op == 1)
{
a = find(a) , b = find(b);
if(a != b)
{
d[a] -= d[b];
p[a] = b;
}
}
else
{
a = find(a);
d[a] += b;
}
}
for (int i = 1 ; i <= n ; i ++)
if(i == find(i)) printf("%d " , d[i]);
else printf("%d " , d[i] + d[find(i)]);
return 0;
}