题目表述:
给你一个偶数 n ,已知存在一个长度为 n 的排列 perm ,其中 perm[i] == i(下标 从 0 开始 计数)。
一步操作中,你将创建一个新数组 arr ,对于每个 i :
如果 i % 2 == 0 ,那么 arr[i] = perm[i / 2]
如果 i % 2 == 1 ,那么 arr[i] = perm[n / 2 + (i - 1) / 2]
然后将 arr 赋值给 perm 。
要想使 perm 回到排列初始值,至少需要执行多少步操作?返回最小的 非零 操作步数。
示例 1:
输入:n = 2
输出:1
解释:最初,perm = [0,1]
第 1 步操作后,perm = [0,1]
所以,仅需执行 1 步操作
示例 2:
输入:n = 4
输出:2
解释:最初,perm = [0,1,2,3]
第 1 步操作后,perm = [0,2,1,3]
第 2 步操作后,perm = [0,1,2,3]
所以,仅需执行 2 步操作
示例 3:
输入:n = 6
输出:4
提示:
2 <= n <= 1000
n 是一个偶数
解题思路:
看到n的取值范围最大只有1000,这道题就有多种解法。
一种就是数学解法,下面只给出解题代码,不再进行深究!
另一种就是简单的模拟情况,把所有情况都给模拟一遍,直到与原数组perm相同,计算出模拟情况的次数。需要注意的就是需要将原数组赋值给一个新的数组,用这个来比较原数组与新数组是否相同,相同则返回。
解题代码(数学):
class Solution {
public:
int reinitializePermutation(int n) {
if (n == 2) {
return 1;
}
int step = 1, pow2 = 2;
while (pow2 != 1) {
step++;
pow2 = pow2 * 2 % (n - 1);
}
return step;
}
};
解题代码(模拟):
class Solution {
public:
int reinitializePermutation(int n) {
vector<int>perm(n,0);
vector<int>arr(n,0);
int cnt=0;
for(int i=0;i<n;i++)
{
perm[i]=i;
}
vector<int>path;
path.assign(perm.begin(),perm.end());
while(arr!=path)
{
for(int i=0;i<n;i++)
{
if(i%2==0)
{
arr[i]=perm[i/2];
}
else
{
arr[i]=perm[n/2+(i-1)/2];
}
}
cnt++;
perm.assign(arr.begin(),arr.end());
}
return cnt;
}
};
这道题是简单题,n增加1e9感觉就变成困难了!!!