题目描述
小蓝有黄绿蓝三种颜色的小球,分别为 �,�,�R,G,B 个。同样颜色的小球没有区别。
小蓝将这些小球从左到右排成一排,排完后,将最左边的连续同色小球个数记为 �1t1,将接下来的连续小球个数记为 �2t2,以此类推直到最右边的小球。
请问,总共有多少总摆放小球的方案,使得 �1,�2,⋯t1,t2,⋯ 为严格单调递增序列,即 �1≤�2≤�3≤⋯t1≤t2≤t3≤⋯。
输入描述
输入一行包含三个整数 �,�,�R,G,B。
其中,0≤�,�,�≤50。0≤R,G,B≤50。。
输出描述
输出一个整数,表示答案。
输入输出样例
示例 1
输入
3 6 0
输出
3
dfs解题的关系在于找到dfs() 括号内的参数,注意查找数据之间内在的关系
这一题的关键在于,上一个小球的颜色与上一个小球连续的数量,还有跳出的深搜的条件,这里sum起了至关重要的作用
#include <iostream>
#include <algorithm>
using namespace std;
int num,a[5],sum;
void dfs(int x,int y){
// x:上一个连续小球的颜色,y:上一个连续小球的数量
if(sum==0){//小球全部排放完毕
num++;
return ;
}
for(int i=0;i<3;i++){
if(i==x) continue;// 与上一个颜色相同
for(int j=y+1;j<=a[i];j++){
a[i]-=j;
sum-=j;
dfs(i,j);
a[i]+=j;
sum+=j;
}
}
}
int main()
{
for(int i=0;i<3;i++){
cin>>a[i];
sum+=a[i];
//sum:小球总数
}
dfs(-1,0);
cout<<num<<endl;
return 0;
}