C语言编写
描述
5位运动员参加了10米台跳水比赛,有人让他们预测比赛结果:
A选手说:B第二,我第三;
B选手说:我第二,E第四;
C选手说:我第一,D第二;
D选手说:C最后,我第三;
E选手说:我第四,A第一;
比赛结束后,每位选手都说对了一半,请编程确定比赛的名次。
一、五次循环
#include <stdio.h>
int checkData(int *p)
{
int tmp[7] = { 0 }; //标记表,实际是哈希表的思路。一开始每个元素都是0。
int i;
for (i = 0; i < 5; i++)
{
if (tmp[p[i]]) //如果这个位置的标记已经是1,则代表重复,直接返回0。
{
return 0;
}
tmp[p[i]] = 1; //如果不是,则给这个位置标记为1。
}
return 1; //全部标记完毕也没有出现重复的情况,代表OK。
}
int main()
{
int p[5]; //0 1 2 3 4分别代表a b c d e
for (p[0] = 1; p[0] <= 5; p[0]++)
{
for (p[1] = 1; p[1] <= 5; p[1]++)
{
for (p[2] = 1; p[2] <= 5; p[2]++)
{
for (p[3] = 1; p[3] <= 5; p[3]++)
{
for (p[4] = 1; p[4] <= 5; p[4]++) //五层循环遍历
{
//这里是五个人的描述,由于比较表达式只有0和1两个结果,如果要两个条件有且只有一个为真,则可以用比较表达式的值总和为1的方式直接判定。别忘了还要判定不能并列。
if ((p[1] == 2) + (p[0] == 3) == 1 && //B第二,我第三
(p[1] == 2) + (p[4] == 4) == 1 && //我第二,E第四
(p[2] == 1) + (p[3] == 2) == 1 && //我第一,D第二
(p[2] == 5) + (p[3] == 3) == 1 && //C最后,我第三
(p[4] == 4) + (p[0] == 1) == 1 && //我第四,A第一
checkData(p) //不能并列
)
{
for (int i = 0; i < 5; i++)
{
printf("%d ", p[i]);
}
putchar('\n');
}
}
}
}
}
}
return 0;
}
二、改进一(哈希中的位图)
检查是否重复的过程,我们是用一个数组来做的,实际每个标签只有0和1两种可能,没必要一定要用数组做,可以考虑用一个位来做(哈希中的位图),代码如下:
int checkData(int *p)
{
char tmp = 0;
int i;
for (i = 0; i < 5; i++)
{
tmp |= 1 << p[i];
//tmp每次或上一位1,p[i]如果是1~5都有,则1<<1到1<<5都或上的结果将会是00111110,如果有并列,则一定会至少却其中一个1,结果就不会是00111110,所以可以判断tmp最终的结果是不是这个数字来判断有没有重复。
}
return tmp == 0x3E;
}
三,循环改为递归
代码如下(示例):
void diveRank(int * p, int n)
{
if(n >= 5) //此时的n是用来控制循环层数的。
{
if ((p[1] == 2) + (p[0] == 3) == 1 && //B第二,我第三
(p[1] == 2) + (p[4] == 4) == 1 && //我第二,E第四
(p[2] == 1) + (p[3] == 2) == 1 && //我第一,D第二
(p[2] == 5) + (p[3] == 3) == 1 && //C最后,我第三
(p[4] == 4) + (p[0] == 1) == 1 && //我第四,A第一
checkData(p)) //查重
{
for (int i = 0; i < 5; i++)
{
printf("%d ", p[i]);
}
putchar('\n');
}
return;
}
for(p[n] = 1; p[n] <= 5; p[n]++)
{
diveRank(p, n + 1); //通过递归模拟多层循环,每进一次递归相当于进了一层新的循环。
}
}
int main()
{
int p[5];
diveRank(p, 0);
return 0;
}
改进四
以上的方法只是让代码简单了点,但还是需要5的5次方比较,而如果本来就是做1到5的排列组合的话只需要5!次比较,能极大的减少遍历所需的次数(复杂度由O(n^n)降低为O(n!)),那是不是可以用一个递归完成对1~5的全排列呢?当然是可以的,所以我们可以进一步优化遍历的方式,将遍历用的递归程序改成这样:
#include <stdio.h>
void swapArgs(int * a, int * b) //交换函数
{
int tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
void diveRank(int * p, int n)
{
if(n >= 5) //此时的n也是用来控制循环层数的。
{
if ((p[1] == 2) + (p[0] == 3) == 1 && //B第二,我第三
(p[1] == 2) + (p[4] == 4) == 1 && //我第二,E第四
(p[2] == 1) + (p[3] == 2) == 1 && //我第一,D第二
(p[2] == 5) + (p[3] == 3) == 1 && //C最后,我第三
(p[4] == 4) + (p[0] == 1) == 1) //我第四,A第一
//由于此时是执行的全排列,所以查重也省了。
{
for (int i = 0; i < 5; i++)
{
printf("%d ", p[i]);
}
putchar('\n');
}
return;
}
int i;
for(i = n; i < 5; i++) //这个递归方式就完成了对1~5的全排列,方法是从后向前不停的执行交换。可以参考改进二和原代码,将这个递归程序写回成循环后,可以更好的理解。
{
swapArgs(p + i, p + n);
diveRank(p, n + 1);
swapArgs(p + i, p + n);
}
}
int main()
{
int p[5] = { 1, 2, 3, 4, 5 }; //当然由于是全排列,所以初值必须给好。
diveRank(p, 0);
return 0;
}