• 博客(46)
  • 收藏
  • 关注

原创 脑机新手指南(二十四)MetaBCI 的深入使用与未来展望 (下)

本文是 MetaBCI 新手教程的下半部分,主要介绍了 MetaBCI 在实际应用中的使用方法,包括数据处理、算法选择与应用、实验设计等方面。同时,对 MetaBCI 的未来发展进行了展望,为新手进一步深入研究脑机接口提供参考。

2025-07-07 16:17:46 410

原创 脑机新手指南(二十三)MetaBCI 简介与基础入门 (上)

本文旨在为刚接触脑机接口(BCI)研究的新手介绍 MetaBCI 开源平台。详细阐述了 MetaBCI 的项目背景、主要组成部分、面临的问题及解决方案,同时介绍了其特性和安装步骤,帮助新手快速了解并开始使用该平台。

2025-07-04 15:42:21 242

原创 脑机新手指南(二十二)基于 Brainstorm 的 MEG/EEG 数据分析(下篇)

本文系统介绍了Brainstorm软件在脑电信号高级分析及脑机接口研究中的应用。主要内容包括:1)脑电信号的时频分析、功能连接分析和源定位分析技术,通过Morlet小波变换、相干性分析和最小范数估计等方法揭示脑功能动态特征;2)运动想象脑机接口实例分析,涵盖实验设计、数据预处理、特征提取(ERD/ERS)及分类器构建流程;3)批量处理与脚本自动化功能,提升分析效率;4)结果可视化与论文发表规范。文章还提供官方文档、社区论坛等资源支持,为研究者提供

2025-07-02 17:00:46 1664

原创 脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)

本文介绍了脑机接口技术及神经电生理信号类型,重点讲解了Brainstorm软件的使用方法。该开源软件支持多模态脑电信号分析,具有用户友好的图形界面,涵盖数据预处理、可视化、源定位等完整分析流程。文章详细说明了软件下载安装步骤、界面功能及基本操作流程,并系统阐述了脑电数据预处理的关键步骤,包括数据导入、格式转换、信号检查、伪迹去除、基线校正和数据分段等。Brainstorm为脑电研究提供了便捷高效的分析工具,特别适合初学者使用。

2025-07-01 17:15:54 703

原创 脑机新手指南(二十)BCI2000 新手入门指南(下篇)

本文深入探讨BCI2000的信号处理和分类算法应用。在信号处理部分,介绍了滤波、特征提取等核心模块的使用方法,并演示了带通滤波器的配置流程。分类算法部分重点讲解LDA、SVM等常用方法,提供了LDA分类器的具体配置步骤。文章还包含Python实操代码,展示如何通过API连接BCI2000系统,以及用Python实现信号滤波和LDA分类的完整流程。最后推荐了NeuroTechX论坛等脑机接口学习资源。全文通过理论结合实践的方式,帮助开发者快速掌握BCI2000的核心功能。

2025-06-30 15:53:44 346

原创 脑机新手指南(十九)BCI2000 新手入门指南(上篇)

BCI2000是一款开源的脑机接口软件套件,支持数据采集、信号处理等功能,具有跨平台兼容性和丰富模块。本文介绍了BCI2000的特点、安装配置及基本使用流程,为新手提供入门指导。该软件为脑机接口研究和应用开发提供了重要支持。

2025-06-27 15:55:44 687

原创 脑机新手指南(十八)EEG-ExPy 新手入门教程(下篇):实验设计与 BCI 应用实践

本文介绍了使用EEG-ExPy库进行脑机接口开发的完整流程。主要内容包括:1) 典型实验范式实现(P300视觉诱发电位和运动想象实验);2) EEG信号预处理流程(带通滤波、工频陷波、伪迹去除等);3) 特征提取与分类方法;4) 实战案例:基于眨眼检测的光标控制系统。文章提供了详细的代码示例,从实验设计、数据采集到实时交互实现,并推荐了进阶学习资源。EEG-ExPy作为新手友好工具,显著降低了BCI开发门槛,建议开发者从复现案例开始,逐步过渡到自定义实验设计。

2025-06-26 15:24:10 356

原创 脑机新手指南(十七)EEG-ExPy 新手入门教程(上篇):基础概念与环境搭建

EEG-ExPy是一款基于Python的开源脑电实验工具包,专为EEG实验设计、数据采集和实时分析而开发。该工具包具有低门槛易用性和模块化特点,支持实验范式设计、信号采集预处理、脑机接口开发等功能。文章详细介绍了EEG信号的基础概念、工具包的优势特点(开源免费、跨平台兼容等),并提供了从硬件准备到软件安装的环境搭建指南,包括两种安装方法和示例代码验证。最后针对新手常见问题给出解决方案,强调即使没有编程基础也能快速上手使用。

2025-06-25 17:12:57 393

原创 脑机新手指南(十六)speechBCI 项目新手入门指南(下):模型训练、评估与项目应用

本文介绍了speechBCI语音脑机接口项目的训练评估与应用全流程。主要内容包括:1) RNN解码器训练教程,从数据准备到模型训练,提供了基线模型性能指标(RNN+3-gram WER 18.8%,RNN+5-gram+OPT WER 13.7%);2) SRILM语言模型工具的使用方法和常见问题解决方案;3) speechBCI在神经科学研究、脑机交互等领域的应用前景;4) 竞赛参与指南,包含示例提交文件和评估流程。项目为语音脑机接口研究提供了完整的技术平台和竞赛框架。

2025-06-24 15:47:59 365

原创 脑机新手指南(十五)speechBCI 项目新手入门指南(上):项目概述、代码结构与环境搭建

《speechBCI语音脑机接口项目指南》介绍了该开源项目的核心功能与使用方法。项目包含RNN解码器和语言模型解码器,与Nature论文研究、公开数据集及机器学习竞赛相关联。文档详细解析了代码结构,包括数据处理、模型训练和评估模块,并提供了数据划分方案(训练集、测试集和竞赛保留集)。安装指南要求Python3.9环境,介绍了两种解码器的安装步骤。该项目为语音BCI研究提供了完整的工具链,是入门和实践的理想平台。

2025-06-23 15:57:32 500

原创 脑机新手指南(十四)MOABB:脑机接口基准测试工具新手入门(下篇)

摘要:本文详细介绍了如何使用MOABB工具进行脑机接口算法评估与结果分析。主要内容包括:1)定义算法管道,展示预处理步骤与分类器的组合实现;2)利用Benchmark类进行自动化评估;3)分析模块的统计报表和可视化功能;4)开源社区参与方式。文章还提供了相关技术社区和资源推荐,为脑机接口研究者提供了实用工具指南。

2025-06-20 17:34:04 295

原创 脑机新手指南(十三)MOABB:脑机接口基准测试工具新手入门(上篇)

摘要:MOABB是由NeuroTechX团队开发的脑机接口(BCI)算法基准测试开源工具,旨在解决BCI领域算法评估标准不统一的问题。该Python项目整合了多个公开EEG数据集,提供数据管理、算法评估和结果分析功能,支持运动想象等实验范式。通过简化数据集获取(如Liu2024、Schirrmeister2017)和预处理流程,MOABB为研究者提供标准化的性能评估平台。安装简单,只需pip安装即可使用,其统一接口设计便于不同算法间的公平比较,有助于推动BCI技术研究的可重复性发展。

2025-06-19 16:48:49 481

原创 脑机新手指南(十二):BciPy 脑机接口工具入门(下篇):核心功能与实践应用

本文详细介绍了开源脑机接口工具BciPy的核心模块与应用实践。系统解析了信号采集处理、刺激呈现和任务管理三大核心模块的技术实现,包括LSL协议实时采集、PsychoPy精确刺激呈现等关键技术。通过RSVP键盘和矩阵拼写器两种典型BCI范式,演示了从校准到自由拼写的完整操作流程。文章还提供了数据可视化、系统校正、自定义开发及测试规范等实用指南,并附有P300拼写系统开发案例与进阶学习资源。该工具为研究者提供了从实验设计到算法开发的完整解决方案,降低了脑机接口技术的研究门槛。

2025-06-17 16:15:13 942

原创 脑机新手指南(十一):BciPy 脑机接口工具入门(上篇):基础概念与环境搭建

BciPy是一个基于Python的开源脑机接口(BCI)开发工具,具有跨平台兼容性(支持Windows、Linux和macOS)和模块化设计特点。其主要功能包括脑电信号采集、处理算法、刺激呈现和任务范式实现,同时提供GUI和CLI两种操作方式。安装需准备Python 3.8/3.9环境,并针对不同操作系统配置特定依赖项。工具内置RSVP键盘等实验范式,便于快速开展BCI研究。通过命令行工具或图形界面,用户可以方便地运行实验任务和训练信号模型。

2025-06-16 15:04:30 402

原创 脑机新手指南(十):高性能脑文本通信:手写方式实现(下)

本文介绍了脑机接口文本通信项目的核心代码模块,包括三个关键函数:1. decodeCharStr函数;2. wer函数;3. rnnOutputToKaldiMatrices函数。

2025-06-16 08:46:27 332

原创 脑机新手指南(九):高性能脑文本通信:手写方式实现(上)

摘要:本研究探索了一种基于手写动作的高性能脑机文本通信技术。项目通过分析脑电信号,使用RNN模型将神经活动转换为文本信息,完整代码及数据可在GitHub和Dryad平台获取。核心算法evaluateRNNOutput函数实现了从RNN输出到可读文本的转换,并计算字符和单词错误率。系统依赖Python 3.6和TensorFlow 1.15等工具包,研究成果发表在《Nature》期刊,为脑机接口技术提供了新的实现路径。该方法展现了将神经信号高效转化为文本信息的潜力,为未来人机交互开辟了新方向。

2025-06-11 16:09:25 309

原创 脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

本文介绍了OpenBCI_GUI数据处理与Widget开发的核心功能。内容涵盖:1)实时滤波操作(工频滤波、平滑处理)和数据导出方法;2)Widget开发流程,包括创建自定义滑块控件;3)常见问题排查方案和设备连接故障处理;4)进阶应用如多设备同步采集和机器学习集成。文章还提供了开源社区参与方式和技术支持渠道,强调该平台在脑电研究和脑机接口开发中的重要作用。

2025-06-10 16:46:08 1079

原创 脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

OpenBCI_GUI是一款专为OpenBCI脑电采集设备设计的开源图形化界面工具,支持Ganglion、Cyton等多种硬件设备。该软件提供跨平台支持(macOS/Windows/Linux),核心功能包括实时脑电信号可视化、FFT频谱分析、工频滤波及数据导出(UDP/OSC/LSL协议)。系统要求1.6GHz处理器、2GB内存,需Processing 4和Java环境。用户可通过GitHub获取源码编译运行,或直接下载预编译版本。软件提供插件扩展机制,支持自定义实验功能,是脑机接口研究的实用工具。

2025-06-09 15:41:22 1205

原创 脑机新手指南(六):开源代码库EEGsynth的学习(下)

本文详细介绍了EEGsynth在脑机交互实验中的实际应用方法。主要内容包括:一、数据采集环节,讲解如何选择EEG设备及配置采集模块;二、数据处理步骤,涵盖预处理和频谱分析模块的使用;三、数据输出方式,包含声音合成及其他输出模块的实现;四、两个典型项目实践案例(Karlstad和TekniskaMuseet补丁)。文章指出EEGsynth为脑机交互初学者提供了完整的技术实现方案,并展望了其未来发展前景。通过本文,读者可以掌握EEGsynth的基本操作流程,为开展脑机交互实验奠定基础。

2025-06-06 16:29:31 351

原创 脑机新手指南(五):开源代码库EEGsynth的学习(上)

EEGsynth是一个开源Python项目,将实时脑电(EEG)数据转换为声音、音乐和视觉输出。该项目采用模块化设计。安装可通过GitHub克隆或pip直接安装,依赖多个Python包。项目包含脑电读取、预处理、合成等模块,每个模块配有配置文件(.ini)和详细文档。EEGsynth不用于临床诊断,而是为艺术与科学探索提供工具平台,促进程序员、艺术家和神经科学家协作。

2025-06-05 15:10:53 470

原创 脑机新手指南(四):新手小白入门 BCI-从认识到初体验(下)

本文介绍了BCI(脑机接口)的进阶学习指南,主要包含实践项目与学习资源两大部分。在实践部分,详细讲解了如何使用MNE-Python库分析EEG数据,包括数据加载、预处理、滤波处理和功率谱密度分析的具体代码实现。在学习资源方面,推荐了NeuroBB论坛、OpenBCI社区等交流平台,以及Kaggle竞赛、BCI会议等实践机会。最后建议通过阅读专业书籍论文和探索深度学习等高级技术来深化BCI研究。全文旨在帮助读者通过实践项目巩固知识,并获取更多学习资源,在BCI领域持续进步。

2025-06-04 16:02:24 708

原创 脑机新手指南(三):新手小白入门 BCI-从认识到初体验(上)

本文介绍了脑机接口(BCI)技术的入门指南。BCI是一种让大脑直接控制外部设备的技术,广泛应用于医疗康复、娱乐游戏和智能家居领域。推荐新手从NeuroTechX社区的AwesomeBCI资源列表开始学习,该列表包含软件工具包、硬件设备、教程项目和阅读材料等实用资源。搭建学习环境需要安装Python或Matlab等软件,注册GitHub和Kaggle账号获取开源项目与数据集。建议初学者使用MNE-Python工具包和Muse等消费级EEG设备进行实践,并参考EEGEdu的在线教程。国内学习者可关注B站相关视频

2025-05-30 17:01:40 691

原创 脑机新手指南(二):BBCI工具箱入门指南

本文为脑机接口入门者介绍 BBCI Toolbox。其优势在于全流程覆盖脑机接口核心环节(信号采集至模型部署),内置 CSP、LDA 等经典算法,文档详尽、上手门槛低且开源免费(MIT 协议,兼容 MATLAB R2018b+)。核心模块包括数据采集、预处理、机器学习、在线实验等,含修复版函数与可视化工具。入门步骤涵盖环境搭建、LDA 分类运动想象信号示例(含代码解析)。还列举常见问题(如函数未定义、准确率低)及解决方案,并推荐进阶论文与社区资源,助力从理论到实践快速入门脑机接口开发。

2025-05-29 16:15:40 957

原创 脑机新手指南(一):BCILAB 脑机接口工具箱新手入门指南

BCILAB是一款免费开源的MATLAB脑机接口工具箱,专为生物医学工程和神经科学领域的新手设计。该工具包提供了完整的脑电信号处理流程,包括数据读取、预处理、特征提取和分类模型训练等功能,采用模块化设计让用户像搭积木一样组合不同功能。优势包括MATLAB友好界面、可视化工具和完整教程资源,特别适合零编程基础的研究者快速上手。典型应用涵盖EEG/MEG信号处理、BCI范式开发和机器学习模型应用。新手可通过内置教程学习基础操作,逐步掌握脑机接口研究的关键技术。

2025-05-28 15:50:42 1002

转载 深入解析 Sentdex 的 BCI 项目:脑机接口开发入门与实践

Sentdex的BCI开源项目为脑机接口初学者提供了实用开发框架。该项目基于Python实现,包含信号采集、实时可视化和机器学习分类等核心模块,支持多通道脑电数据处理。硬件方面可适配OpenBCI等设备,软件依赖numpy、matplotlib等库,并提供从数据预处理到模型训练的全流程示例。项目亮点在于模块化设计,开发者可灵活扩展机器学习模型或适配不同硬件设备。该项目不仅演示了基础BCI实现,更为医疗辅助、智能家居等应用场景开发提供了起点,是入门脑机接口开发的优质实践资源。

2025-05-27 17:47:31 175

原创 Brduino脑机连载(二十一)基于Brduino实现脑控无人机(简略步骤)

基于Brduino实现脑控无人机(简略步骤)

2024-11-28 11:57:04 1589 1

原创 Brduino脑机连载(二十)推荐了解-Brduino脑机开发模组介绍

Brduino以字母B开头,取自 BCI(脑机接口的缩写),后缀 -rduino借鉴了Arduino(目前全球流行的单片机开发板),目标成为热门和流行的脑机接口开发板。

2024-11-28 11:51:26 1710

原创 Brduino脑机连载(十九)脑电实验中,如何保证脑电信号采集准确

在脑电信号采集实验过程中,确保信号采集质量至关重要,以下是一些可以采取的有效措施

2024-11-27 18:47:28 1384

原创 Brduino脑机连载(十八)脑电采集中眨眼、闭眼、咬牙等特殊动作在脑电波形中的体现

脑电采集中眨眼、闭眼、咬牙等特殊动作在脑电波形中的体现

2024-11-27 18:46:13 1323

原创 Brduino脑机连载(十七)脑电采集中湿电极、凝胶、盐水、干电极的对比

常见的电极类型包括湿电极、凝胶电极、盐水电极和干电极,今天我们就来详细对比分析一下它们各自的特点。

2024-11-27 16:48:45 2169

转载 Brduino脑机连载(十六)基于 Arduino 实现脑电 Marker Sender(脑电打标签器)

在脑电实验领域,准确标记脑电信号对于后续的数据处理和分析至关重要。

2024-11-27 14:10:21 371

原创 Brduino脑机连载(十五)基于Python FBCCA算法的SSVEP脑电信号识别

基于Python FBCCA算法的SSVEP脑电信号识别

2024-11-27 13:49:56 1207

原创 Brduino脑机连载(十四)基于Python实现CCA算法进行SSVEP识别及其实现效果

探讨如何使用 Python 编程语言实现基于 CCA 算法的 SSVEP 识别

2024-11-27 11:23:48 1177 1

原创 Brduino脑机连载(十三)CCA(典型相关分析)和 FBCCA(基于滤波器组的典型相关分析)算法对比

CCA(典型相关分析)和 FBCCA(基于滤波器组的典型相关分析)算法对比

2024-11-27 09:57:28 1563

原创 Brduino脑机连载(十二)SSVEP 脑电识别常用算法

SSVEP 脑电识别常用算法

2024-11-27 09:43:25 1351

原创 Brduino脑机连载(十一)P300 脑电识别常用算法

P300脑电识别常用算法

2024-11-27 08:43:35 1419

原创 Brduino脑机连载(十)运动想象脑电识别常用算法

运动想象脑电识别常用算法介绍

2024-11-26 19:32:55 791

原创 Brduino脑机连载(九)运动想象、稳态视觉诱发电位、P300三大脑机接口范式介绍

运动想象、SSVEP 和 P300 三大脑机接口范式介绍

2024-11-26 19:24:31 1560

原创 Brduino脑机连载(八)P300和SSVEP及其做脑机打字的异同点

P300和SSVEP既有基于脑电图技术、反映大脑对刺激响应以及在认知神经科学相关领域应用等相同之处,又在概念定义、产生机制、波形特征、实验设计和应用侧重等方面存在诸多差异,它们在不同的研究和应用场景中各自发挥着独特且重要的作用。

2024-11-26 19:11:40 1087

原创 Brduino脑机连载(七)事件相关电位(ERP)与P300的关系

P300是ERP的特定成分。

2024-11-26 18:55:45 1189

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除