蓝桥杯每日一真题——[蓝桥杯 2021 省 B] 杨辉三角形(二分+规律)

该文介绍了如何解决蓝桥杯竞赛中关于杨辉三角形的问题,通过二分查找法确定给定数字在数列中的位置,涉及组合数计算和等差数列的知识。
摘要由CSDN通过智能技术生成

[蓝桥杯 2021 省 B] 杨辉三角形

题目描述

下面的图形是著名的杨辉三角形:

如果我们按从上到下、从左到右的顺序把所有数排成一列,可以得到如下数列:

1 , 1 , 1 , 1 , 2 , 1 , 1 , 3 , 3 , 1 , 1 , 4 , 6 , 4 , 1 , … 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1, \ldots 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,

给定一个正整数 N N N,请你输出数列中第一次出现 N N N 是在第几个数。

输入格式

输入一个整数 N N N

输出格式

输出一个整数代表答案。

样例 #1

样例输入 #1

6

样例输出 #1

13

提示

对于 20 % 20 \% 20% 的评测用例, 1 ≤ N ≤ 10 1 \leq N \leq 10 1N10;

对于所有评测用例, 1 ≤ N ≤ 1 0 9 1 \leq N \leq 10^9 1N109

蓝桥杯 2021 第一轮省赛 B 组 H 题。

思路:

1·以斜着看,首先我们可以从中间把这个三角形劈成两半,因为左右对称,留左半。左半有了肯定就是最先出现的
在这里插入图片描述

2.看图,第一行得数都是C(0,N)第二行都是C(1,N)第三行都是C(2,N)以此类推第i行就是C(i,N),也就是说每一行的数都可以用组合数来表示大小,需要有一个求组合数的函数:

//求组合数
long long C(int a, int b)
{
    long long x = 1, y = 1;
    for (int i = a, j = b; j >= 1; i--, j--)
    {
        x = x * i;
        y = y * j;
        if (x / y > n)
        { //如果在这过程中已经大于N了就没必要再继续了
            return x / y;
        }
    }
    return x / y;
}

2.我们知道了这个数的大小与行和列有关那这就转变为在第i行第j列的数的大小,我们可以发现这个的每一行的第一个数的的组合数下面的那个数都是从2i开始的,所以我们可以用二分法来找L=2i,R=n;

for (int i = 0; i <=14; i++) // 遍历行
    {
        long long L = 2 * i, // 为什么是2*i
            R = n, mid;
        while (L <= R)
        {
            mid = (L + R) / 2;
            if (C(mid, i) > n)
            {
                R = mid - 1;
            }
            else if (C(mid, i) < n)
            {
                L = mid + 1;
            }
            else if (C(mid, i) == n)
            {
                flag = true;
                break;
            }
        }

3这样我们可以找到这个数的i,和j然后可以发现找到一个数的i和j之后这个数所在的位置就是
所在行-1可以发现是一个等差数列,然后在加上在本行的位置就能得出结果:公式为(j + 1) * j / 2 + i + 1;

if (flag == true)
        {
            cout << (mid + 1) * mid / 2 + i + 1;
            break;
        }

4.在找得时候我们用二分的方法来找!!节省时间!!!


qwq,博主是个大笨蛋找不到规律根本Orz

全部代码:

#include <iostream>
using namespace std;
int n;
long long C(int a, int b)
{
    long long x = 1, y = 1;
    for (int i = a, j = b; j >= 1; i--, j--)
    {
        x = x * i;
        y = y * j;
        if (x / y > n)
        { // 如果在这过程中已经大于N了,就没必要再继续了
            return x / y;
        }
    }
    return x / y;
}
// 一个十分简单的算组合数的函数
int main()
{

    cin >> n;
    bool flag = false;
    for (int i = 0; i <=14; i++) // 遍历行
    {
        long long L = 2 * i, // 为什么是2*i
            R = n, mid;
        while (L <= R)
        {
            mid = (L + R) / 2;
            if (C(mid, i) > n)
            {
                R = mid - 1;
            }
            else if (C(mid, i) < n)
            {
                L = mid + 1;
            }
            else if (C(mid, i) == n)
            {
                flag = true;
                break;
            }
        }
        if (flag == true)
        {
            cout << (mid + 1) * mid / 2 + i + 1;
            break;
        }
    }
    system("pause");
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

c0re

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值