没有上司的舞会(树形dp)

原题链接:285. 没有上司的舞会 - AcWing题库

做为树形dp的经典题目,看到这道题我们首先可以想到,每个上司跟他的下属的关系就跟子节点和父节点关系一样。由此可以想到,题目关系可以看作一棵树,其中每个上司都是每一个下属的父节点,以此关系可以建树,然后再考虑如何更新状态。

1 首先我们需要建立关系树,因为树就是特殊的图,所以我们可以用邻接表来建立。

2 对于状态的更新:每次每个节点都可以选择或者不选,我们可以开一个二维数组f[N][2],其中

f[i][0]代表不选当前节点,f[i][1]代表选择当前节点。

    (1)当选择当前节点时,当前节点值最大为不选子节点的最大值加上当前值 :

          即为f[i][0]+=f[i-1][1]。

    (2)当不选择当前节点时,可以选择选子节点或者不选,状态更新为加上两者之中更大的一个:

          即为f[i][1]+=max(f[i-1][0],f[i-1][1]);

代码实现:

#include<iostream>
#include<bits/stdc++.h>
using namespace std;
const int N=6010;
int f[N][2],happy[N];
int e[N],h[N],en[N],idx;
int gen[N];
void  add(int a,int b)
{
  e[idx]=b,en[idx]=h[a],h[a]=idx++;
}
void dfs(int u)
{
    f[u][1]=happy[u];
    for(int i=h[u];~i;i=en[i])
    {
        int j=e[i];
        dfs(j);
        f[u][0]+=max(f[j][0],f[j][1]);
        f[u][1]+=f[j][0];
    }
}
int main()
{
    memset(h,-1,sizeof h);
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)    cin>>happy[i];
    for(int i=1;i<=n-1;i++)
    {
        int a,b;
        cin>>a>>b;
        gen[a]=1;
        add(b,a);
    }
    int cnt=1;
    while(gen[cnt]) cnt++;
    dfs(cnt);
    cout<<max(f[cnt][1],f[cnt][0])<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值