原题链接:285. 没有上司的舞会 - AcWing题库。
做为树形dp的经典题目,看到这道题我们首先可以想到,每个上司跟他的下属的关系就跟子节点和父节点关系一样。由此可以想到,题目关系可以看作一棵树,其中每个上司都是每一个下属的父节点,以此关系可以建树,然后再考虑如何更新状态。
1 首先我们需要建立关系树,因为树就是特殊的图,所以我们可以用邻接表来建立。
2 对于状态的更新:每次每个节点都可以选择或者不选,我们可以开一个二维数组f[N][2],其中
f[i][0]代表不选当前节点,f[i][1]代表选择当前节点。
(1)当选择当前节点时,当前节点值最大为不选子节点的最大值加上当前值 :
即为f[i][0]+=f[i-1][1]。
(2)当不选择当前节点时,可以选择选子节点或者不选,状态更新为加上两者之中更大的一个:
即为f[i][1]+=max(f[i-1][0],f[i-1][1]);
代码实现:
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
const int N=6010;
int f[N][2],happy[N];
int e[N],h[N],en[N],idx;
int gen[N];
void add(int a,int b)
{
e[idx]=b,en[idx]=h[a],h[a]=idx++;
}
void dfs(int u)
{
f[u][1]=happy[u];
for(int i=h[u];~i;i=en[i])
{
int j=e[i];
dfs(j);
f[u][0]+=max(f[j][0],f[j][1]);
f[u][1]+=f[j][0];
}
}
int main()
{
memset(h,-1,sizeof h);
int n;
cin>>n;
for(int i=1;i<=n;i++) cin>>happy[i];
for(int i=1;i<=n-1;i++)
{
int a,b;
cin>>a>>b;
gen[a]=1;
add(b,a);
}
int cnt=1;
while(gen[cnt]) cnt++;
dfs(cnt);
cout<<max(f[cnt][1],f[cnt][0])<<endl;
return 0;
}