1.什么是图 ?
我们最熟悉的社交网络就是一个最典型的图
通常用图指代一种广义的抽象结构,用来表示一堆实体和它们之间的关系。实体被叫作图的节点,而实体和实体之间的关系构成了图的边。
—个图G={γ,g}包含一个节点集合γ和一个边的集合g。
以社交网络为例用户可以作为节点,而用户和用户之间的朋友关系可以作为边。
图几乎无处不在,
当我们在网上购物时,用户和产品之间的购买关系可以形成用户—产品图;当
我们在公司工作时,有公司的组织结构图。
2.深度学习与图
二维的网格数据可以理解为图像,一维的序列数
据可理解为文本。
2.1 图数据的特殊性质
以卷积神经网络为例我们通过对比网格数据和图数据来
说明为什么它不能直接用在图上。
1. 节点的不均匀分布
在网格数据中,每个节点(不包含边缘节点)只有4个邻接点,因此我们
可以很方便地在一个网格数据的每个小区域中定义均匀的卷积操作。而在图结
构中节点的度数可以任意变化,每个邻域中的节点数都可能不一样,我们没
有办法直接把卷积操作复制到图上。
2.排列不变性
当我们任意变换两个节点在图结构中的空间位置时,整个图的结构是不变
的。如果用邻接矩阵表示图,调换邻接矩阵的两行,则图的最终表示应该是不
变的。在网格中,例如在图像上,如果我们变换两行像素,则图像的结构会明
显变化。因此,我们没有办法像处理图像一样直接用卷积神经网络处理图的邻
接矩阵,因为这样得到的表示不具有排列不变性。
3. 边的额外属性
大部分图结构上的边并非只能取值二元的{0,1},因为实体和实体的关系不
仅仅是有和没有,在很多情况下,我们希望了解这些实体关系连接的强度或者
类型。强度对应到边的权重,而类型则对应到边的属性。显然在网格中边
是没有任何属性和权重的,而卷积神经网络也没有可以处理边的属性的机制。
2.2将深度学习扩展到图上的挑战
由于图结构的普遍性,将深度学习扩展到图结构上的研究得到了越来越多的关注,图神经网络(GraphNeuralNetworks,GNN)的模型应运而生。深度学习在图上的应用有以下几个难点。
(1)图数据的不规则性
(2)
图结构的多样性
作为表示实体关系的数据类型