图神经网络基础(1)

1.什么是图
        我们最熟悉的社交网络就是一个最典型的图

        通常用图指代一种广义的抽象结构,用来表示一堆实体和它们之间的关系。实体被叫作图的节点,而实体和实体之间的关系构成了图的边。 —个图G={γ,g}包含一个节点集合γ和一个边的集合g。 以社交网络为例用户可以作为节点,而用户和用户之间的朋友关系可以作为边。 图几乎无处不在, 当我们在网上购物时,用户和产品之间的购买关系可以形成用户—产品图;当 我们在公司工作时,有公司的组织结构图。
2.深度学习与图
        二维的网格数据可以理解为图像,一维的序列数 据可理解为文本。
2.1 图数据的特殊性质
        以卷积神经网络为例我们通过对比网格数据和图数据来 说明为什么它不能直接用在图上。

1. 节点的不均匀分布

        在网格数据中,每个节点(不包含边缘节点)只有4个邻接点,因此我们 可以很方便地在一个网格数据的每个小区域中定义均匀的卷积操作。而在图结 构中节点的度数可以任意变化,每个邻域中的节点数都可能不一样,我们没 有办法直接把卷积操作复制到图上。
2.排列不变性
        当我们任意变换两个节点在图结构中的空间位置时,整个图的结构是不变 的。如果用邻接矩阵表示图,调换邻接矩阵的两行,则图的最终表示应该是不 变的。在网格中,例如在图像上,如果我们变换两行像素,则图像的结构会明 显变化。因此,我们没有办法像处理图像一样直接用卷积神经网络处理图的邻 接矩阵,因为这样得到的表示不具有排列不变性。
3. 边的额外属性
        大部分图结构上的边并非只能取值二元的{0,1},因为实体和实体的关系不 仅仅是有和没有,在很多情况下,我们希望了解这些实体关系连接的强度或者 类型。强度对应到边的权重,而类型则对应到边的属性。显然在网格中边 是没有任何属性和权重的,而卷积神经网络也没有可以处理边的属性的机制。
2.2将深度学习扩展到图上的挑战
        由于图结构的普遍性,将深度学习扩展到图结构上的研究得到了越来越多的关注,图神经网络(GraphNeuralNetworks,GNN)的模型应运而生。深度学习在图上的应用有以下几个难点。

1)图数据的不规则性 

(2) 图结构的多样性
        作为表示实体关系的数据类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值