1.归一化流与扩散模型
自一化流(Normalizing Flow)是生成模型,通过将易于处理的分布进行变换以队对高维数据进行建模。归一化流可以将简单的概率分布转化为极其复杂的分布,并用于强化学习、变分推理等领域。
现有的归一化流是基于变量替换公式构建的,其中连续时间归一化流的轨迹由微分方程公式化。具体来说,连续归一化流通过如下微分方程对原始数据进行变换:
与连续时间类似,归一化流允许通过变量替换公式计算对数似然,然而,双射的要求限制了在实际应用中或理论研究中的对复杂数据的建模。有几项工作试图放宽这种双射要求。例如,DifFlow引入了一种生成建模算法,基于归一化流的想法,DifFlow 使用了归一化流来直接学习扩散模型中的原本需要人工设置的漂移系数。这使它拥有了归一化流和扩散模型的优点。因此相比归一化流,DiFlow产生的分布边界更清晰,并且可以学习更一般的分布,而与扩散模型相比,其离散化步骤更少所以采样速度更快。另一项工作,隐式非线性扩散模型(Implicit Nonlinear Diffusion Model,INDM)采用了类似LSGM 的设计,先使用归一化流将原始数据映射到潜在空间中,然后在空间中进行扩散。利用伊藤公式&