无聊写的一些杂题

文章介绍了两道编程竞赛题目,分别是P3957[NOIP2017普及组]跳房子和P1419题目,主要涉及动态规划和二分查找算法。在跳房子问题中,通过单调队列优化了动态规划的状态转移,而在P1419题目中,使用二分查找求解区间和的最大值。D.MakeItRound问题则展示了如何通过找因子和去尾零来简化计算。
摘要由CSDN通过智能技术生成


一些杂题的题解。

P3957 [NOIP2017 普及组] 跳房子

#include<bits/stdc++.h>
#define endl '\n'
#define int long long
#define inf 1e9
using namespace std;
const int N=5e5+5;
const int mod=998244353;

int n,d,k;
int x[N],s[N],f[N];
deque<int> dq;

bool check(int g)
{
	while(!dq.empty()) dq.pop_back();
	int l=max(1ll,d-g),r=d+g; // 边界

	for(int i=1;i<=n;i++) f[i]=-inf; // 无法到达的点 赋值为负无穷
	for(int i=1;i<=n;i++)
	{
		if(x[i]>r) break;
		if(x[i]<l) continue;
		f[i]=s[i];
	} // 对于一步能到达的点赋初值 (初始化

	int whe=1; // 记录当前的点
	for(int i=1;i<=n;i++)
	{
		while(!dq.empty()&&x[dq.front()]<x[i]-r) dq.pop_front(); // 去头,不在范围内的点
		while(x[whe]<=x[i]-l) // 满足的点
		{
			whe++;
			if(f[whe-1]==-inf) continue;  // 不能去的点
			if(x[whe-1]<x[i]-r) continue; // 不在范围内的点
			while(!dq.empty()&&f[whe-1]>=f[dq.back()]) dq.pop_back(); // 去尾
			dq.push_back(whe-1);
		}
		if(!dq.empty()) f[i]=max(f[i],f[dq.front()]+s[i]); // dp
		if(f[i]>=k) return 1;
	}
	return 0;
}

signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	
	int sum=0,l=1,r=0;

	cin>>n>>d>>k;
	for(int i=1;i<=n;i++) 
	{
		cin>>x[i]>>s[i];
		if(s[i]>0) sum+=s[i];
		r=max(l,x[i]);
	}
	if(sum<k) 
	{
		cout<<-1<<endl;
		return 0;
	}

	int mid,ans;
	while(l<=r)
	{
		mid=(l+r)>>1;
		if(check(mid)) ans=mid,r=mid-1;
		else l=mid+1;
	}

	cout<<ans<<endl;
	return 0;
}
/*
  dp + 二分
  n2*logn tle
  只是这个距离的最大值都没办法超过k 我就要增加g
  单调队列 d-g~d+g
  如果暴力的话 就是每一个 f[i]=max(f[i-k])+a[i]; d-g<=k<=d+g
  对于每一个i 维护一个单调队列  存f[i-k] 的最大值。
  l~r
  n*logd
*/

P1419

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;

int n,s,t;
int a[N];
double b[N],sum[N];
deque<int> dq;

bool check(double x)
{
	while(!dq.empty()) dq.pop_back();

	for(int i=1;i<=n;i++) b[i]=(double)a[i]-x;

	for(int i=1;i<=n;i++) sum[i]=sum[i-1]+b[i];

	for(int i=1;i<=n;i++)
	{
		if(i>=s) 
		{
			// i-s 是因为区间最小都要是s
			while(!dq.empty()&&sum[i-s]<sum[dq.back()]) dq.pop_back();
			dq.push_back(i-s);
		}
		// dq.push_back(i-s);
		while(!dq.empty()&&i-dq.front()>t) dq.pop_front();
		if(!dq.empty()&&sum[i]>=sum[dq.front()]) return true;
	}

	return false;
}

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);

	cin>>n>>s>>t;
	for(int i=1;i<=n;i++) cin>>a[i];

	double ans,l,r,mid;
	ans=l=-10000,r = 10000;
    while (r - l > 1e-5) {
        mid = (l + r) / 2;
        if (check(mid))
            ans=l = mid;
        else r = mid;
    }
	printf("%.3lf\n",ans);
	return 0;
}

/*
  将分式转换为整式进行计算。就变成了 s[l..r]>=k*(r-l+1) 无解
  (k是二分的答案,s[l..r]是l~r的区间和)
  这样就变成了寻找前缀和的最大值,用一个单调队列维护。

*/

D. Make It Round

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=1e5+5;

int n,m;

void solve()
{
	cin>>n>>m;
	int now=1,cnt=0;
	while(1)
	{
		for(int i=1;i<=10;i++)
		{
			if(n*i%10==0)
			{
				now=i; // 寻找因子
				break;
			}
		}
		if(now>m) break;
		m/=now; // 拆解因子
		n=n*now/10; // 去尾0
		cnt++;
	}
	cout<<n*m;
	for(int i=1;i<=cnt;i++) cout<<0;cout<<endl;
}

signed main()
{
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	int _=1;
	cin>>_;
	while(_--)
	{
		solve();
	}
	return 0;
}

/*
  即神奇又清晰的思路,我还是只会笨模拟。。
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值