关于若哈夫曼树的叶子结点数为N,则总结点数为2N-1的推导

首先列出推导涉及的有:

叶子结点数N,非叶子结点数I,结点总数T,边的总数E

方法一:

1.首先可知          结点总数=叶子结点数+非叶子结点数。即T=N+I。

2.关于边的总数,由于哈夫曼树只有度为2的结点和度为0的结点(即叶子结点),一个度为2的结点有两条边(分别连着左孩子和右孩子),一个度为0的结点(即叶子结点)没有边(因为其没有孩子),即:E=2I。

3.关于边与总结点数的关系,这里可看作所有除了根结点的结点都有一条与其父结点相连的边。即:E=T-1。

4.将T=N+I   与   E=2I    代入      E=T-1。

得:2I=N+I-1

整理得:I=N-1

5.将I=N-1代入T=N+I 得:T=N+N-1=2N-1

方法二:

使用性质:任意一棵二叉树中,若叶结点的数量为n0,度为2的结点的数量为n2,则n0=n2+1。

现在n0=N,则n2=T-N,将此式代入n0=n2+1中。

得:N=T-N+1

故有T=2N-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值