一、引入
我们知道,某些课程只能在一些其他前置课程学完之后学习,或是说一些任务只能在其他任务结束之后完成。要如何找到做这些事情的顺序呢?
其实很明显,我们只需先完成没有前置要求的任务,或是说将某些任务的前置任务完成之后再开始处理这些任务。
这些事情是有先后顺序的,且不成环。如果存在环,就像你找人处理事情,他让你找另一个人,另一个人又让你去找… 最后又回到刚开始的那个人。结果这些人互相踢皮球,问题无从下手。
处理这类问题,我们可以用 图 来表示,节点表示 课程,有向边表示前置条件。那么问题可以转换为:能否列出一个序列,对 图 的每一条有向边而言,边的起始顶点总是排在边的结束顶点之前。 而这样的序列称之为拓扑序列,这样的问题称之为 拓扑排序。
假设有 5 门课程,编号 1 ~ 5,其中 1 号课程和 2 号课程没有其他课程要求,学习 3 号课程之前需要先学习1 号和 2 号课程,学习 4 号课程需要先学习 3 号课程,学习5 号课程需要先学习 3 号和 4 号课程。
那么我们可以得到拓扑序列:1,2,3,4,5 或 2,1,3,4,5。
可以看出,拓扑序列并不唯一。
二、实现方式
暂时记录一种,后续再展开。
1、减一法
减一法是基于减治思想的一个实现:我们不断做这样一件事情,在余下的有向图中,我们去选择一个没有被指向的顶点(没有前置条件的任务),可以任意选择,选择后我们去除这个顶点以及从该顶点出发的边;而当这样的顶点不存在时(queue
为空时),流程就终止,此时比较这样的顶点数量和总顶点数量是否一致,来判断是否可行。
那么最终的解是 1,2,3,4,5
那么我们知道 哪些顶点是被指向,哪些顶点没有被指向呢?
其实很简单,我们需要再说明一些定义:
在有向图中,顶点 v 的
入度:以 v 作为终点的边数。
出度:以 v 作为起点的边数。
因此,我们想要知道一个顶点有没有被指向,其实只需看该顶点的入度是否为 0。
我们如何维护每个顶点的入度呢,其实只需在建图时,将入度记录在入度表int[] indegree
即可;而在拓扑排序中选择一个顶点后,将从该顶点出发的有向边指向的那些顶点的入度减一即可。
这样,我们维护一个队列queue
记录当前还未处理的入度为 0 的顶点,每次处理一个顶点并记录在 ans,同时将新的入度变为 0 的顶点加入到队列。
例题01
代码实现01
//原题链接:https://www.nowcoder.com/practice/88f7e156ca7d43a1a535f619cd3f495c
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class Main {
// 最大顶点的数量
public static int N = 200001;
// 拓扑排序用到的队列, 即记录 入度为 0 的顶点
public static int[] queue = new int[N];
public static int l, r; // 队列的开头,结尾
// 入度表,i 号顶点的入度 即 indegree[i]
public static int[] indegree = new int[N];
// 邻接表 建图
public static List<Integer>[] g;
// 收集的一条拓扑序列
public static List<Integer> ans = new ArrayList<>();
public static int n, m;
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
String[] str = in.readLine().split(" ");
n = Integer.parseInt(str[0]);
m = Integer.parseInt(str[1]);
// 建图
g = new ArrayList[n + 1];
for (int i = 0; i <= n; i++) {
g[i] = new ArrayList<>();
}
Arrays.fill(indegree, 0, n + 1, 0); // 刷新入度,置为 0
for (int i = 0; i < m; i++) {
str = in.readLine().split(" ");
int x = Integer.parseInt(str[0]);
int y = Integer.parseInt(str[1]);
// 添加 有向边 x -> y
g[x].add(y);
indegree[y]++; // 指向y,y的入度 +1
}
// 拓扑排序
topSort();
// 若 记录序列 的 顶点个数不为 n,说明不存在 拓扑序
if (ans.size() != n) {
out.println(-1);
} else {
for (int i = 0; i < n - 1; i++) {
out.print(ans.get(i) + " ");
}
out.println(ans.get(n - 1));
}
out.flush();
out.close();
in.close();
}
public static void topSort() {
//清空上一次的记录
l = r = 0;
ans.clear();
// 将入度 为 0 的顶点 入队
for (int i = 1; i <= n; i++) {
if (indegree[i] == 0) queue[r++] = i;
}
while (l < r) {
int x = queue[l++];
ans.add(x);
for (int y : g[x]) {
// 移除 x -> y, y 入度变为 0 则入队
if (--indegree[y] == 0) queue[r++] = y;
}
}
}
}
参考文献:
[1] Anany Levitin,潘彦(译)。算法设计与分析基础(第3版)