力扣hot100:295. 数据流的中位数(两个优先队列维护中位数)

LeetCode:295. 数据流的中位数
在这里插入图片描述
这个题目最快的解法应该是维护中位数,每插入一个数都能快速得到一个中位数。
根据数据范围,我们应当实现一个 O ( n l o g n ) O(nlogn) O(nlogn)的算法。

1、超时—插入排序

使用数组存储,维持数组有序,当插入一个元素时使用插入排序维持数组有序,这种方式无异于使用插入排序,时间复杂度不达标。

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),由于每一个数都会被插入一次,插入一次的时间为 O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
    在这里插入图片描述
class MedianFinder {
public:
    MedianFinder() {}
    
    void addNum(int num) {
        nums.emplace_back(num);
        for(int i = nums.size() - 1; i >= 1; -- i){
            if(nums[i] >= nums[i - 1]) break;
            swap(nums[i], nums[i-1]);
        }
    }
    
    double findMedian() {
        int mid = nums.size() / 2;
        if(nums.size() % 2 == 1)
            return 1.0 * nums[mid];
        return 1.0 * (nums[mid] + nums[mid - 1]) / 2;
    }
private:
    vector<int> nums;
};

2、中位数为根的BST

如果我们使用二分查找,找到新加入元素的位置,是否可行呢?答案是可行的,但是使用数组存储并不能很快更新。

  • 使用高效率的树形二分查找,查找和插入效率很高,可以使用AVL、红黑树、B树等
  • 但这里要求的是能快速取得中位数,普通的树形二分查找就不行了,不能通过下标快速找到。因此只能使用数组二分查找,但是插入效率又不高

根据上面的讨论,我们发现,如果能每次插入维护的一个二叉搜索树是一个完全二叉树,根附近就是中位数,并且插入操作只需要 O ( l o g n ) O(logn) O(logn)的时间,那就太好了。

这样我们就可以思考,能不能实现这样的数据结构:

  • 对于任何一段区间,满足根是中位数,且左子树小于根,根小于右子树的一个二叉搜索树
    • 我们规定偶数情况下,两个数小者作为根。如下图:
      在这里插入图片描述

如果能实现这样的数据结构,就刚好和题目要求实现“数据结构”这一说法匹配了!
(我感觉是能实现的,但是时间问题,我就先不写了,有兴趣的同学可以自行研究)

3、优先队列

维护两个优先队列,一个存储比中位数小于的最大堆,一个存储比中位数大的最小堆(包括等于的,即最小堆里面的元素可能会比最大堆多一个)。那么我们就将数分为了两堆,很显然中位数能通过某种方式从两个优先队列队头取到。

并且很显然,维护这两个堆也很容易,当需要插入一个数时,我们只需要比较两个堆队头就可以选择插入的堆。并且为了维持两个堆队头是中位数

  • 当元素数为偶数时,插入一个元素,如果插入到左边,则最后中位数会出现在左边,我们将其放入右边。如果插入到右边则直接结束
  • 当元素数为奇数,插入一个元素,如果插入到左边则结束,如果插入到右边则右边多一个需要放一个放到左边。
  • 不管怎么放,根据优先队列的性质,队头都是最值,即根据中位数将区间分为两段,通过优先队列快速进行维护,左右的边界值。

时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn),一次插入时间复杂度 O ( l o g n ) O(logn) O(logn)
空间复杂度: O ( n ) O(n) O(n)

class MedianFinder {
public:
    MedianFinder() {left.push(-0x3f3f3f3f);right.push(0x3f3f3f3f);}
    
    void addNum(int num) {
        ++n;
        //先插入
        if(num >= right.top()){
            right.push(num);
        }else left.push(num);
        //再移动
        if(left.size() > right.size()){
            right.push(left.top());
            left.pop();
        }else{
            if(right.size() == left.size() + 2){
                left.push(right.top());
                right.pop();
            }
        }
        return;
    }
    
    double findMedian() {
        if(n & 1){//n & 1 == 1 即奇数
            return right.top();
        }
        return (left.top() + right.top()) / 2.0;
    }
private:
    priority_queue<int, vector<int>, less<int>> left;//左区间
    priority_queue<int, vector<int>, greater<int>> right;//右区间
    int n = 0;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yorelee.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值