图论:1615. 最大网络秩(贪心,非完全图一定存在两个点之间没有边)


1615. 最大网络秩
在这里插入图片描述
在不考虑两座道路直接相连时,我们求出入度(或出度)最大的两个点即可。
若相连,则存在一条边,所以我们将边存入一个集合中,快速查找是否存在。

1.计算出度+排序+哈希

在使用哈希存边时,unordered_set不能存储pair<type1,type2>类型,set可以,但是set速度更慢。为了使用unordered_set,我们可以观察数据大小,注意到n≤100,因此我们可以将两个数合并成一个数:

  • 对于一条边(a,b),我们确保a<b(这样不会重复存边),将a保存在高2位,b保存在低2位。如(15,2),处理过后就是1502。这是一种映射关系,并且是无序边集到整数的一一映射。

排序: O ( n l o g n ) O(nlogn) O(nlogn)
求最大网络秩的最坏时间复杂度: O ( n 2 ) O(n^2) O(n2),因为要考虑两个顶点相连的情况。

class Solution {
public:
    int maximalNetworkRank(int n, vector<vector<int>>& roads) {
        vector< pair<int, int> > outDegrees(n);
        for(int i = 0; i < n; ++ i){
            outDegrees[i].second = i;
            outDegrees[i].first = 0;
        }
        unordered_set<int> st;
        for(auto & i : roads){
            outDegrees[i[0]].first ++;
            outDegrees[i[1]].first ++;
            int x = i[0], y = i[1];
            if(x > y) swap(x, y);
            st.insert(x * 100 + y);
        }

        sort(outDegrees.begin(),outDegrees.end());

        int mx = -1;

        for(int i = n - 1; i >= 1; -- i){
            int j = i - 1;
            for(; j >= 0; -- j){
                int tmp = outDegrees[i].first + outDegrees[j].first;
                int x = outDegrees[i].second;
                int y = outDegrees[j].second;
                if(x > y) swap(x, y);
                if(st.count(x * 100 + y)){
                    tmp -= 1;
                }
                if(tmp >= mx) mx = tmp;//只有严格小于才能跳过,等于时,后者可能更好,如4,4,4,前两个四有边,但第一个和第三个之间无边。
                else break;
            }
            if(j == i - 1) break;
        }

        return mx;
    }
};
  • 虽然会比枚举快,但最坏也是 n 2 n^2 n2了,直接枚举

2.枚举

时间复杂度: O ( n 2 ) O(n^2) O(n2)

class Solution {
public:
    int maximalNetworkRank(int n, vector<vector<int>>& roads) {
        vector<int> outDegrees(n, 0);
        unordered_set<int> st;

        for (const auto& road : roads) {
            outDegrees[road[0]]++;
            outDegrees[road[1]]++;
            int x = min(road[0], road[1]);
            int y = max(road[0], road[1]);
            st.insert(x * 100 + y);
        }

        int maxRank = 0;

        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                int rank = outDegrees[i] + outDegrees[j];
                if (st.count(i * 100 + j)) {
                    rank--;
                }
                maxRank = max(maxRank, rank);
            }
        }

        return maxRank;
    }
};

官方:
使用领接矩阵存储是否存在边,而没使用哈希。

class Solution {
public:
    int maximalNetworkRank(int n, vector<vector<int>>& roads) {
        vector<vector<bool>> connect(n, vector<bool>(n, false));
        vector<int> degree(n, 0);
        for (auto v : roads) {
            connect[v[0]][v[1]] = true;
            connect[v[1]][v[0]] = true;
            degree[v[0]]++;
            degree[v[1]]++;
        }

        int maxRank = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                int rank = degree[i] + degree[j] - (connect[i][j] ? 1 : 0);
                maxRank = max(maxRank, rank);
            }
        }
        return maxRank;
    }
};

3.贪心

我们考虑到方法一,我们使用了排序这个思想,使得从最大的选取,但是我们在之后发现了,即使是排序了我们也不得不可能使得内层循环是 O ( n ) O(n) O(n)次。

我们是否能有更好的办法呢?我们可以观察到,我们取得的两个最大值,最小的时候它们的秩也是它们之和再-1。那么我们还有必要考虑比这两个最大值其中的一个更小的值吗?没有了!因为更小的时候最大也是其中一个-1,这和只考虑他俩是没有区别的

有了这样一个想法,我们可以更快速的解决这个问题:

  1. 当出度的最大值有多个时,答案必然在这个最大值中选择两个产生,不管是否它们有连接。
  2. 当出度的最大值只有一个时,答案必然包含该最大值。

由于任何多次遍历都是 O ( n ) O(n) O(n),因此我们可以直接找到该最大值的集合。

class Solution {
public:
    int maximalNetworkRank(int n, vector<vector<int>>& roads) {
        vector< int > outDegrees(n);

        unordered_set<int> st;
        for(auto & i : roads){
            outDegrees[i[0]] ++;
            outDegrees[i[1]] ++;

            int x = i[0], y = i[1];
            if(x > y) swap(x, y);
            st.insert(x * 100 + y);
        }

        int mx = -1;//度的最大值
        for(auto & i : outDegrees){
            if(i > mx) mx = i;
        }

        vector<int> mxDegrees;//存储最大度的节点数

        for(int i = 0; i < n; ++ i){
            if(outDegrees[i] == mx) mxDegrees.emplace_back(i);
        }

        int ans = -1;
        if(mxDegrees.size() == 1){//最大度就一个
            for(int i = 0; i < n; ++ i){
                if(outDegrees[i] != mx){
                    int x = mxDegrees.back();
                    int y = i;
                    if(x > y) swap(x, y);
                    ans = max(outDegrees[i] + mx - (st.count(x * 100 + y) == 0 ? 0 : 1), ans);
                }
            }
        }else{
        	int m = roads.size();
            if (mxDegrees.size() * (mxDegrees.size() - 1) / 2 > m) {
                return mx * 2;
            }

            for(int i = 0; i < mxDegrees.size(); ++ i){
                for(int j = i + 1; j < mxDegrees.size(); ++ j){
                    ans = max(ans, mx * 2 - (st.count(mxDegrees[i] * 100 + mxDegrees[j]) == 0 ? 0 : 1));
                }
            }
        }

        return ans;
    }
};

在这里插入图片描述

4.思考

在这里插入图片描述
这里将所有出度为最大值的顶点放入到 f i r s t A r r firstArr firstArr集合中,然后考虑其定点数 x x x,与所有边的个数的关系。

实际上这里就是在考虑这样一个问题:
如果一个顶点边集构成的图不是一个完全图,那么是否一定存在两个点之间没有边?
答案是对的!

证明一下:
如果一个图是一个完全图,则必然这个图中的所有顶点之间存在两个点没有边相连。
如果我们将这个图的某条边删除,则这个图一定不是完全图,则删除的这条边的两个顶点没有边相连。
则我们可以知道如果一个图不是完全图,则必然可以通过它的完全图删除某些边得到,而每次删除的边都会使得删除的这条边的两个顶点没有边相连。
即一个图如果不是完全图,则必然存在两个点没有边相连。

所以题解中用到的优化就是,判断该图是否可能是完全图,如果是则没办法,如果不可能是则直接判定一定存在两个顶点没有边相连。

使用:

x ∗ ( x − 1 ) 2 与边数 m 比较 \frac{x*(x-1)}{2} 与边数m比较 2x(x1)与边数m比较
x ∗ ( x − 1 ) 2 \frac{x*(x-1)}{2} 2x(x1)代表了图是一个完全图是边的个数,如果这个个数比边数m大,则必然这个图不是完全图,即一定存在两个点之间没有边,既然这个集合里面的出度都一样,那么我们只需选取这两个没有边的点就可以得到答案为 2 ∗ m x 2*mx 2mx

我们注意到m是整个图中的边数,而不是 f i r s t A r r firstArr firstArr中的边数,原因在于求 f i r s t A r r firstArr firstArr中的边数比较复杂,直接使用m代替了。

当然这里思考并不是对这个题目而言的,这题目可能最坏还是 O ( n 2 ) O(n^2) O(n2),只需要思考出贪心,并理解为什么非完全图一定存在两个点之间没有边即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yorelee.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值