学习hive笔记

本文介绍了Hive作为大数据统计分析工具的基本概念和工作原理。Hive是由Facebook开源,用于解决海量结构化日志统计问题的数据仓库工具,它将SQL转换为MapReduce作业在Hadoop上运行。Hive的元数据存储在MySQL中,数据存储在HDFS上。虽然Hive支持DML操作,但并不适合实时查询,适用于批处理和离线处理场景。文章还讨论了Hive与传统RDBMS的区别,并提到了MPP数据库和Hive的适用场景。
摘要由CSDN通过智能技术生成

hive(简介)

hive使用sql来完成大数据统计分析的工具

hive是Facebook公司开源的工具,用来解决海量结构化日志的统计问题,是构建在hadoop之上的数据仓库。

HDFS:hive的数据是存在HDFS(distributed storge),元数据(metadata)存在对应底层关系模型数据库,一般是mysql

MR(计算引擎):hive的作业(SQL)是通过hive的框架翻译成MR作业。速度很慢。

这里的引擎也可以是Tez,Spark,不管底层用的是什么引擎,对于用户来说是不感知的,同样的SQL,只需要通过参数切换,就可以实现。

Yarn:hive的作业是提交到yarn上运行的。

Hadoop开发可以使用单机,但是生产上一定是分布式

hive其实是一个客户端,没有集群的概念,提交作业到集群的Yarn上去运行(没有感情的提交机器)

SQL==>Hive==>MR==>Yarn

生产环境上,哪台机器需要提交hive,就在哪台机器配置hive,不同的机器上的hive是相互独立的。

hive的职责:讲SQL翻译成底层对应的执行引擎作业。

distributed storge(分布式存储):HDFS,AWS S3,各种云,OOS,COS

这些系统,hive都可以对接,只要有对应的jar包。本地的文件系统(file开头)也

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@xiaoluo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值