灯塔ARL安装

Docker安装

1.卸载冲突的软件包

for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done

2.更新系统软件包

sudo apt update

3.安装依赖包

sudo apt install apt-transport-https ca-certificates curl software-properties-common

4.添加 Docker 中科大 GPG 密钥

sudo mkdir -p /etc/apt/keyringssudo curl -fsSL http://mirrors.ustc.edu.cn/docker-ce/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.ascsudo chmod a+r /etc/apt/keyrings/docker.asc

5. 添加 Docker 中科大镜像稳定版软件源

1,首先,删除现有的 docker.list 文件:

sudo rm /etc/apt/sources.list.d/docker.list

2,重新执行添加源的命令:

echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.asc] Index of /docker-ce/linux/ubuntu/ $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

6.再次更新软件包

sudo apt update

7.安装最新版本docker以及docker-compose

sudo apt install docker-ce docker-ce-cli containerd.iosudo apt-get install docker-compose

8.配置 Docker 使用镜像加速器(hub)

sudo mkdir -p /etc/dockerecho '{    "registry-mirrors": ["Welcome to nginx!"]}' | sudo tee /etc/docker/daemon.json > /dev/null

9.重新启动 Docker 服务

sudo systemctl daemon-reloadsudo systemctl restart docker

10.查看版本信息

docker --versiondocker-compose --version

ARL安装

1.将需要的所有文件上传至对应安装文件夹(我这里用的finalshell直接拖得,比较方便)

链接:百度网盘 请输入提取码 

2.解压灯塔文件夹

unzip ARL-2.6.1.zip

2.加载镜像

docker load < arl_2.6.1.tar

docker load < arl_rabbitmq.tar

docker load < arl_mongo.tar

3.查看docker镜像文件,可以看见所有成功导入的镜像

docker images

4. 进入docker文件夹,查看隐藏文件.env并修改对应版本号

cd ARL-2.6.1/dockerls -avim .env修改版本号为v2.6.1cat .env

5.首次安装需要创建数据库

docker volume create arl_db

6.安装完成,启动灯塔

docker psdocker compose up -d

7.访问http://服务器IP地址:5003即可登录,默认账号密码admin/arlpass(友情提醒:登陆后请立即修改密码)

协助甲方安全团队或者渗透测试人员有效侦察和检索资产,发现存在的薄弱点和攻击面。.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
。 协助甲方安全团队或者渗透测试人员有效侦察和检索资产,发现存在的薄弱点和攻击面。.zip目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值