- 博客(1)
- 收藏
- 关注
原创 机器学习小总结
接下来我们便可以将准备好的数据拿给提前选择好的模型进行学习,如果只是仅仅将我们刚才提前划分好的训练集以及验证集拿给模型进行学习,效果依旧不太好,因此我们可以采用k折交叉验证的方式,每次将数据划分为不同的训练集以及验证集拿给机器学习,最终取这k次结果的平均,这样能对模型进行更好的评估,使得结果更准确。一个训练出来的模型通常有欠拟合以及过拟合两种情况,前者是由于模型太过简单,无法良好地预测,后者则是由于模型太过于复杂,泛化能力不强,对于过拟合,我们通常可以采用正则化惩罚之类的方法来控制模型的复杂度。
2023-04-18 23:28:45
47
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅