KMP算法4

#include<stdio.h>
#include<string.h>

//计算next函数值
int get_next(char *T,int *next)
{
	
	int i,j;
	i=1;
	next[1]=0;
	j=0;
	
	while(i<strlen(T))
	{
		if(j==0||T[i-1]==T[j-1])
		{
			i++;
			j++;
			next[i]=j;
		}
		else {
		      j=next[j];
			  }
	
	}
	
	
 } 
 
int Index_KMP(char *S,char *T)
{
	
	int next[100];
	get_next(T,next);
	int i=1;
	int j=1;
    //int a=0; 
	while(i<=strlen(S)&&j<=strlen(T))
	{   
	    
		if(j==0||S[i-1]==T[j-1])
		{
			i++;
			j++;
		
		}
		else {
		    j=next[j];
		    
			}
    //a++;
	}
	//return a;
	if(j>strlen(T))
	{
        return i-(int)strlen(T);
        
	    
	}
	return -1;
	       
}
int main()
{
	char S[100];
	char T[100];
	printf("输入主串:\n");
	gets(S);
	printf("输入子串:\n");
	gets(T);
	
    int next[100];
    int a= Index_KMP(S,T);
    printf("字符串匹配成功,位置为:%d",a);
	return 0;
}

利用KMP算法进行字符串匹配,若匹配成功,则返回子串在主串上第一个匹配到的位置。
next数组的首位通常设置为-1,求next数组的时候,对于模式串的位置j,考察patten[j-1],查找字符串patten[j-1]的最大相等的前缀和后缀,假设最大相等的前缀和后缀长度为k,则有k使得p[0]p[1]p[2].......p[k-2]p[k-1]=p[j-k]p[j-k+1].........p[j-2]p[j-1]。
KMP模式匹配算法其实就是利用部分已经匹配的有效信息,保持主串坐标不回溯,通过修改模式串的坐标,使模式串尽量移动到有效位置。KMP模式匹配算法的关键就在于next数组。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值