流程控制语句详解

import java.util.Scanner;
/*
流程控制语句:
单分支结构:
只有一个条件,符合就执行
双分支结构:
会有两个条件,符合其中一个就执行语句块,不符合就执行另外一个语句块
多分支结构:
有多个条件,匹配哪个就执行对应的语句块,如果都不匹配那么就执行最后的else语句块
嵌套if分支结构
分支结构中包含分支结构
switch多分支结构
擅长于等值条件判断的情况

*/

public class IfDemo{
public static void main(String[] args){
//借助一个Math数学类,random()方法返回类型是double类型,该方法的作用是生成一个随机数,数据范围是[0,1)
//生成一个[0,5]的随机正整数
/*int num = (int)(Math.random()*6);
if(num > 3){
System.out.println(“大于3”);
}
System.out.println(“number:” + num);

	double i = 6 * Math.random();
	double j = 6 * Math.random();
	double k = 6 * Math.random();
	int count = (int) (i + j + k);*/
	/*if(count > 15 ) {
		System.out.println("今天手气不错");
	}
	if(count >= 10 && count <= 15) {          //错误写法:10<count<15
		System.out.println("今天手气很一般");
	}
	if(count < 10) {
	System.out.println("今天手气不怎么样");
	}*/
	/*if(count > 15 ) {
		System.out.println("今天手气不错");
	}
	else if(count >= 10 && count <= 15) {          //错误写法:10<count<15
		System.out.println("今天手气很一般");
	}
	else {
	System.out.println("今天手气不怎么样");
	}
	System.out.println("得了" + count + "分"); //要求必须是布尔表达式*/
	
	//双分支结构
	//计算圆的面积和周长
	/*int r = 4;
	final double PI = 3.14;
	double area = PI * r * r;
	double length = 2 * PI * r;
	if(area >= length){
		System.out.println("面积大于等于周长");
	}else{
		System.	out.println("周长大于面积");
	}*/
	
	//Scanner类
	//Scanner类是一个文本扫描器类,System.in是标准输入,这句话的是可以接收键盘输入
	//通过new关键字创建了一个sc的扫描器对象   设计模式(装饰设计模式)
	/*Scanner sc = new Scanner(System.in);
	System.out.println("请输入:");
	//String str = sc.nextLine();
	//String str = sc.next();
	int num = sc.nextInt();
	System.out.println("你刚从键盘输入字符是:" + num);*/
	
	//多分支语句
	/*int age = (int)(Math.random() * 100);
	if(age < 10){
		System.out.println("儿童");
	}else if(age < 20){
		System.out.println("青少年");
	}else if(age < 35){
		System.out.println("青年");
	}else if(age < 50){
		System.out.println("中年");
	}else if(age < 70){
		System.out.println("老年");
	}else{
		System.out.println("老寿星");
	}*/
	
	//嵌套if分支结构
	/*int time = (int)(Math.rando
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值