🍍原文: A Blockchain-based System for Secure Image Protection Using Zero-watermark
🍍写在前面: 原文是一篇 2020 年的 CCF-C,它对传统的零水印技术进行了改进,并与区块链应用结合了起来。
Algorithm Design
大多数哈希算法,例如感知哈希算法 ( P e r c e p t u a l H a s h i n g A l g o r i t h m , P H a s h ) \mathsf{(Perceptual\ Hashing\ Algorithm, PHash)} (Perceptual Hashing Algorithm,PHash),能够有效抵御缩放攻击,但它们在面对诸如旋转和移位这样的几何攻击时显得比较脆弱。为了克服这一局限性,零水印技术被提出并应用。
在本研究中,我们采用 图像归一化技术 [12] 将图像标准化为一种标准形态,从而提高了算法对几何攻击的抵抗能力。通过小波变换获得的低频系数包含了图像的绝大多数能量,而利用块 奇异值分解 ( S i n g u l a r V a l u e D e c o m p o s i t i o n , S V D ) \mathsf{(Singular\ Value\ Decomposition, SVD)} (Singular Value Decomposition,SVD) 获得的低频系数中的最大奇异值表现出了良好的稳定性特性,这进一步增强了我们算法的鲁棒性。
我们的零水印方案分为两个主要部分:零水印的生成和零水印的验证。
1 零水印的生成
算法流程如下图所示:
具体步骤如下:
⑴ 对尺寸为 M × M M × M M×M 的原始图像进行归一化处理,并将该图像转换成标准图像;
⑵ 以标准图像的不变质心作为有效区域的重心,提取该区域以规避归一化图像的黑色边缘效应,确保有效区域的大小为 N × N N × N N×N;
⑶ 对有效区域进行 l l l 级小波变换,从而得到低频子带,并将该子带分割成 n × n n × n n×n 大小的子块。子块的总数为:
K = ( N 2 i × n ) 2 K=(\frac{N}{2^i\times n})^2 K=