基于Spring Boot的食物热量分析平台设计与实现 食物热量识别与营养评估平台开发 基于Web的食物热量分析系统设计与实现 面向健康饮食管理的食物热量智能分析平台设计(源码+定制+讲解)

博主介绍:
    ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。

技术范围:
    我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。

 主要内容:
     我的服务内容包括:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文撰写与辅导、论文降重、长期答辩答疑辅导。我还提供腾讯会议一对一的专业讲解和模拟答辩演练,帮助你全面掌握答辩技巧与代码逻辑。

🍅获取源码请在文末联系我🍅

温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的阿龙联系方式的名片!

课题名称(必填)

基于Spring Boot的食物热量分析平台设计与实现

技术栈:vue 3spring boot

详细功能需求描述(必填)

①用户端
(1)单个食物热量查询。用户输入食物名称,系统返回该食物的热量、营养成分、功效等信息。基本资料。
(2)食物功效查询。用户选择功效(如:减肥、增肌、降血压等),系统返回具有该功效的食物列表。
(3)食物搭配查询。用户输入一种食物,系统推荐适合与之搭配食用的其他食物,并说明搭配理由。
(4)实物对比。用户选择两种或多种食物,系统展示它们的热量、营养成分等数据对比,帮助用户做出更健康的选择。
(5)单餐食谱推荐。用户选择早、中、晚餐,系统根据用户设置的饮食偏好、热量需求等推荐相应食谱。
(6)全天食谱推荐。系统根据用户设置的饮食偏好、热量需求等,自动生成一整天的食谱,并提供详细的热量和营养成分分析。
(7)手动输入热量计算。用户手动输入当天摄入的食物,系统自动计算总热量和营养成分。
(8)健康食谱推荐。根据用户的健康状况(如:肥胖、糖尿病、高血压等),系统推荐相应的健康食谱,并标注忌口食物。
(9)饮食记录与分析。用户可以记录每天的饮食情况,系统提供热量、营养成分分析,并生成图表,帮助用户了解自己的饮食习惯。
(10)健康目标设定与追踪。用户可以设定减重、增肌等健康目标,系统根据目标推荐食谱,并追踪用户的进度。
(11)个人信息管理。用户可以修改个人资料、饮食偏好、健康状况等信息。
(12)历史记录查询。用户可以查看历史查询记录、食谱推荐记录、热量计算记录等。
(13)系统设置。用户可以设置系统语言、主题、通知等。
②系统管理员端
(1)用户信息管理。管理员可以查看、修改和删除用户信息。
(2)用户权限管理。管理员可以设置用户的权限,例如:是否允许访问某些功能。
(3)食物信息管理。管理员可以录入、修改和删除新的食物信息,包括食物名称、热量、营养成分、功效等。
(4)食谱管理。管理员可以录入、修改和删除新的食谱,包括食谱名称、食材、做法、热量、营养成分等。
(5)系统参数设置。管理员可以设置系统的参数,例如:默认热量单位、默认食谱推荐数量等。
(6)数据备份与恢复。管理员可以对系统数据进行备份和恢复。
(7)系统日志查看。管理员可以查看系统的操作日志。基本资料。能查看,修改和删除所有人的基本资料。

第二章 所用开发工具介绍

在本项目的后端开发中,我们选择了Java语言和Spring Boot框架,以简化业务逻辑和数据操作。数据存储则依赖于MySQL数据库。前端部分,我们利用HTML、CSS、JavaScript和Vue.js创建了用户友好的界面。开发工具方面,我们选用了Eclipse,其强大的功能和效率助力了代码编写和项目管理。Navicat用于数据库管理,提高了操作的效率和准确性。这样的技术组合不仅加速了项目开发,还确保了系统的稳定性。

2.1 Spring Boot框架

Spring Boot是Spring项目的一个子项目,旨在简化Spring应用程序的初始搭建以及开发过程。它通过提供默认配置来减少开发中的配置工作,支持独立运行的Spring应用程序。Spring Boot内置了Tomcat等容器,使得应用无需部署WAR文件即可运行。还提供了多种Starter,方便开发者快速集成各种功能,如数据库访问、消息传递等。Spring Boot的自动配置特性让应用部署变得简单快捷,非常适合微服务架构的开发。

2.2 Vue.js前端框架

Vue.js 是一款用于构建用户界面的渐进式 JavaScript 框架。它通过采用自底向上的增量开发设计,使得开发者可以逐步将 Vue 引入到项目中,而无需一次性重构整个应用。Vue.js 的核心在于其响应式的数据绑定和组合式的视图组件,能够轻松实现数据与视图的同步更新,极大地提高了前端开发的灵活性和效率。Vue 还提供了强大的指令系统、模板语法以及虚拟 DOM 机制,帮助开发者更高效地构建动态、交互性强的单页应用(SPA)。无论是简单的页面还是复杂的应用程序,Vue.js 都能提供简洁且高效的解决方案。

2.3 MySQL数据库

MySQL是一个广泛使用的开源关系型数据库管理系统(RDBMS),它基于SQLStructured Query Language)语言。MySQL由瑞典MySQL AB公司开发,后来被Sun Microsystems收购,现在是Oracle公司的产品。MySQL以其高性能、可靠性和易用性而闻名。它支持多种操作系统,包括LinuxWindowsmacOSMySQL数据库使用客户端-服务器架构,客户端可以通过网络与服务器进行通信,执行SQL查询和管理数据库。MySQL的特点是它提供了丰富的数据类型,支持事务处理、子查询和复杂的连接操作。MySQL还提供了存储过程、触发器和视图等高级功能,使得开发者可以编写高效的数据库操作代码。

2.4 B/S结构

B/S结构是一种应用程序架构模式,它将应用程序的用户界面和业务逻辑分离。在B/S结构中,用户通过浏览器访问服务器上的应用程序,服务器处理请求并返回结果。它的优势在于它的跨平台性和可访问性。用户不需要安装特定的客户端软件,只需要一个支持Web技术的浏览器即可访问应用程序。这使得B/S应用程序更容易部署和维护。B/S结构通常与MVC模式结合使用,以实现高效的用户界面和业务逻辑分离。在这种模式下,服务器端的应用程序负责处理业务逻辑,并将结果发送到客户端的浏览器进行展示。

系统界面实现:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

class CollaborativeFiltering:
    """
    A simple user-based collaborative filtering implementation.
    """
    def __init__(self, ratings_matrix):
        """
        ratings_matrix: 2D numpy array of shape (num_users, num_items)
        with zeros for missing ratings.
        """
        self.R = ratings_matrix
        self.num_users, self.num_items = self.R.shape
        self.user_means = np.true_divide(self.R.sum(axis=1), (self.R != 0).sum(axis=1))
        self.similarity = self._compute_user_similarity()

    def _compute_user_similarity(self):
        """
        Compute user-user cosine similarity matrix based on ratings.
        """
        # Normalize by subtracting mean user rating
        R_norm = np.zeros_like(self.R, dtype=float)
        for u in range(self.num_users):
            for i in range(self.num_items):
                if self.R[u, i] != 0:
                    R_norm[u, i] = self.R[u, i] - self.user_means[u]
        # Compute cosine similarity
        sim = cosine_similarity(R_norm)
        np.fill_diagonal(sim, 0)  # ignore self-similarity
        return sim

    def predict(self, user_index, item_index, k=5):
        """
        Predict rating of user u for item i using k most similar users.
        """
        # Get similarities and ratings for users who rated item
        sim_scores = self.similarity[user_index]
        # Users who have rated the item
        rated_by = np.where(self.R[:, item_index] != 0)[0]
        if len(rated_by) == 0:
            return self.user_means[user_index]

        # Select top-k similar users
        neighbors = rated_by[np.argsort(sim_scores[rated_by])][-k:]
        sim_neighbors = sim_scores[neighbors]
        ratings_neighbors = self.R[neighbors, item_index] - self.user_means[neighbors]

        if sim_neighbors.sum() == 0:
            return self.user_means[user_index]

        pred = self.user_means[user_index] + np.dot(sim_neighbors, ratings_neighbors) / np.sum(np.abs(sim_neighbors))
        return pred

# Example usage
if __name__ == "__main__":
    # Sample ratings: rows=users, cols=items, 0 means missing
    ratings = np.array([
        [5, 3, 0, 1],
        [4, 0, 0, 1],
        [1, 1, 0, 5],
        [1, 0, 0, 4],
        [0, 1, 5, 4],
    ])
    cf = CollaborativeFiltering(ratings)
    u, i = 0, 2
    print(f"Predicted rating for user {u} on item {i}: {cf.predict(u, i):.2f}")

为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
     博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。
源码获取
文章下方名片联系我即可~
大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
精彩专栏推荐订阅:在下方专栏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值