- 博客(1)
- 收藏
- 关注
原创 IDMIL:一种无对齐可解释深度多实例学习:从宏基因组数据预测疾病
多示例学习MIL 假设训练数据集中的每个数据是一个包(Bag),每个包都是一个示例(instance)的集合,每个包都有一个训练标记,而包中的示例是没有标记的;如果包中至少存在一个正标记的示例,则包被赋予正标记;而对于一个有负标记的包,其中所有的示例均为负标记。包是由多个示例组成的,在多示例学习中,包带有类别标签而示例不带类别标签,最终的目的是给出对新的包的类别预测。如果一个包里面存在至少一个被分类器判定标签为+的示例,则该包为正包;如果一个包里面所有的示例都被分类器判定标签为-,则该包为负包。 IDM
2022-02-28 14:53:24 532
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人