荷兰国旗问题到快排的实现

问题引入

从底层原理去分析,快排也并不是太难。理解层次上不难,但是要写出来,还是得花时间的,边界有点烦人。
是否听过荷兰国旗的问题呢?

荷兰国旗1

荷兰国旗1:给定一个数组arr,和一个数num,请把小于等于num的数放在数组的左边,大于num的数放在数组的右边。要求额外空间复杂度O(1),时间复杂度O(N)

例如:给定一个数组[2,6,9,8,4,5,6,4,6,7,1]; 和 num = 5,根据这个num去划分这个数组,划分成两个区域 <=num>num

在这里插入图片描述

如何实现分层呢?单指针

如何实现呢?一个指针frontier指向小于等于的边界区域frontier初始值为-1,一个变量i指向第一个元素,用来遍历数组,当遍历到一个元素小于num,和小于等于区域第一个元素交换,小于等于区域扩大一个元素(frontier自增),i自增,当不相等的时候,i自增,frontier不动。重复上述过程直到结束。

在这里插入图片描述

#include<stdio.h>
int main()
{
	int arr[] = { 2,6,9,8,4,5,6,4,6,7,1 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int frontier = -1;//小于等于区域的边界
	int i = 0;
	int num = 5;
	while (i < sz)6
	{
		if (arr[i] <= num)
		{
			int tmp = arr[i];
			arr[i] = arr[frontier + 1];
			arr[frontier + 1] = tmp;
			frontier++;
			i++;
		}
		else
		{
			i++;
		}
	}
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

在这里插入图片描述

荷兰国旗2

给定一个数组arr,和一个数num,请把小于num的数放在数组的左边,等于num的数放在数组的中间,大于num的数放在数组的右边。要求额外空间复杂度O(1),时间复杂度O(N)。

例如:给定一个数组2,3,5,6,9,6,1,3,4,6,5,8]; 和 num = 5,根据这个num去划分这个数组,划分成三个区域 <num==num >num

在这里插入图片描述

如何实现分层呢?双指针

双指针:用两个变量对指针划分区域。
如何实现呢?一个指针less一个指针more分别为小于区域,和大于区域的边界,初始值分别为-1和最大下标+1,另有一个变量i,去遍历数组。当小于num,和小于区域外的第一个元素交换lessi都自增;如果等于num,i自增;当大于num,和大于区域外的第一个元素进行交换more自减,i不能自增,因为换过来的数是一个新数,不能确定和num的关系。那循环结束的条件是什么呢?当imore相遇的时候,是不是就意味着已经分好了呢。

在这里插入图片描述

#include<stdio.h>
int main()
{
	int arr[] = { 2,3,5,6,9,6,1,3,4,6,5,8 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int less = -1;//小于区域的边界
	int more = sz - 1;//大于区域的边界
	int i = 0;
	int num = 5;
	while (i < more)
	{
		if (arr[i] < num)
		{
			int tmp = arr[i];
			arr[i] = arr[less + 1];
			arr[less + 1] = tmp;
			i++;
			less++;
		}
		else if (arr[i] > num)
		{
			int tmp = arr[i];
			arr[i] = arr[more-1];
			arr[more - 1] = tmp;
			more--;
		}
		else
		{
			i++;
		}
	}
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	printf("\n");
	return 0;
}

在这里插入图片描述

快排

以上两个版本的荷兰国旗,就是快排的底层原理。

快排1.0

快排1.0根据荷兰国旗1进而改进的,荷兰国旗中的num在快排中如何体现呢?是以数组下标最大的那个元素作为num,进行分层,当分层完成后,还需要将num小于等于区域外层第一个数交换,才算完成了一次排序。换好之后,num作为为分界,对左右两边的部分数组重复上述过程。(本质是二叉树的遍历

在这里插入图片描述
代码如下:

做了一些优化,需要熟悉自增,自减

#include<stdio.h>
void Swap(int* arr, int a ,int b)
{
	int tmp = arr[a];
	arr[a] = arr[b];
	arr[b] = tmp;
}
int partition(int* arr, int left, int right)
{
	int forntier = left - 1;
	while (left < right)
	{
		if (arr[left] <= arr[right])
		{
			Swap(arr, left++, ++forntier);
		}
		else
		{
			left++;
		}
	}
	Swap(arr, forntier + 1, right);
	return forntier + 1;
}
void QuickSort(int* arr, int left, int right)
{
	if (right <= left)
		return;
	int forntier = partition(arr, left, right);
	QuickSort(arr, left, forntier - 1);
	QuickSort(arr, forntier + 1 , right);
}
int main()
{
	int arr[] = { 2,6,9,8,4,5,6,4,6,7,5 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int i = 0;
	QuickSort(arr, 0, sz - 1);//参数传的时候要注意区间,传的是闭区间
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

在这里插入图片描述

第一次partition

在这里插入图片描述

小于等于区域外的第一个数交换

在这里插入图片描述
在这里插入图片描述

这里是left-1,每一次递归进来它的边界都是不同的,是左边界-1。

在这里插入图片描述

快排2.0

快排2.0依据荷兰国旗2进行改版的,同样是以数组下标最大的元素作为划分,划分成小于、等于、大于,三个区域,partition过后,还需要将数组下标最大的元素和大于区域的第一个元素进行交换,并且返回两个边界等于区域的左边界,和等于区域的右边界,在这以这两个边界为划分,重复上述过程。
这种方法比快排1.0快一点,可以一次排好多个值。

在这里插入图片描述

同样把荷兰国旗2的代码进行了优化,需要熟悉自增,自减

#include<stdio.h>
void Swap(int* arr, int a ,int b)
{
	int tmp = arr[a];
	arr[a] = arr[b];
	arr[b] = tmp;
}
int* partition(int* arr, int left, int right)
{
	int less = left - 1;
	int more = right;
	while (left < more)
	{
		if (arr[left] > arr[right])
		{
			Swap(arr, left, --more);
		}
		else if (arr[left] < arr[right])
		{
			Swap(arr, left++, ++less);
		}
		else
		{
			left++;
		}
	}
	Swap(arr, more, right);
	int* p = (int*)malloc(sizeof(int) * 2);
	p[0] = less + 1;
	p[1] = more;
	return p;
}
void QuickSort(int* arr, int left, int right)
{
	if (right <= left)
		return;
	int* p = partition(arr, left, right);
	QuickSort(arr, left, p[0] - 1);
	QuickSort(arr, p[0] + 1, right);
	free(p);
}
int main()
{
	int arr[] = { 2,3,5,6,9,6,1,3,4,6,5,5 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int i = 0;
	QuickSort(arr, 0, sz - 1);//参数传的时候要注意区间,传的是闭区间
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

第一次partition

在这里插入图片描述

和大于区域的第一个数交换,这也是为什么more不用-1
原本不是等于区域的边界,但是交换后就是了。

在这里插入图片描述

返回等于区域的边界

在这里插入图片描述
在这里插入图片描述

快排3.0

不管是快排1.0,还是快排2.0,都能找到最坏的情况,已经有序(升序),那么时间复杂度是O(N^2),像快排这种分层最好的情况是,这个划分值,是这些数中的中间值,这样可以把子问题的规模划分为n/2。
左边和右边是等规模的这种,如下图。这样是最好的情况。

在这里插入图片描述

其它规模…

在这里插入图片描述

如何改进呢?随机取[left,right]中的一个元素作为划分值,这样划分值的选取就变成了概率事件,通过数学中的数学期望什么的计算,最终快排3.0版本的时间复杂度是O(N*logN)

是对快排2.0进行改版。
代码如下,同样的也是优化过后的
随机值

在这里插入图片描述

#include<stdio.h>
#include<stdlib.h>
#include<time.h>
void Swap(int* arr, int a ,int b)
{
	int tmp = arr[a];
	arr[a] = arr[b];
	arr[b] = tmp;
}
int* partition(int* arr, int left, int right)
{
	int less = left - 1;
	int more = right;
	while (left < more)
	{
		if (arr[left] > arr[right])
		{
			Swap(arr, left, --more);
		}
		else if (arr[left] < arr[right])
		{
			Swap(arr, left++, ++less);
		}
		else
		{
			left++;
		}
	}
	Swap(arr, more, right);
	int* p = (int*)malloc(sizeof(int) * 2);
	p[0] = less + 1;
	p[1] = more;
	return p;
}
void QuickSort(int* arr, int left, int right)
{
	if (right <= left)
		return;
	Swap(arr, left + (rand() % (right - left + 1)), right);
	int* p = partition(arr, left, right);
	QuickSort(arr, left, p[0] - 1);
	QuickSort(arr, p[0] + 1, right);
	free(p);
}
int main()
{
	srand((unsigned int)time(NULL));
	int arr[] = { 2,3,5,6,9,6,1,3,4,6,5,5 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int i = 0;
	QuickSort(arr, 0, sz - 1);//参数传的时候要注意区间,传的是闭区间
	for (i = 0; i < sz; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

这种分层你学费了吗?

小试牛刀:力扣原题

LeetCode 21.移除元素

在这里插入图片描述
在这里插入图片描述

int removeElement(int* nums, int numsSize, int val)
{
	int left = -1;//不等于区域
	int i = 0;
	while (i < numsSize)
	{
		if (nums[i] != val)
		{
			int tmp = nums[i];
			nums[i] = nums[left + 1];
			nums[left + 1] = tmp;
			left++;
			i++;
		}
		else
			i++;
	}
	return left + 1;
}
int main()
{
	int arr[] = { 0,1,2,2,3,0,4,2 };
	int sz = sizeof(arr) / sizeof(arr[0]);
	int val = 2;
	int ret = removeElement(arr, sz, val);
	for (int i = 0; i < ret; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

在这里插入图片描述

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值