- 博客(18)
- 收藏
- 关注
原创 【人工智能-18】机器学习:决策树、随机森林
摘要:本文介绍了决策树和随机森林两种机器学习算法。决策树通过树形结构进行决策,具有可解释性强、对数据预处理要求低等优点,其核心在于选择最优特征分割点,常用方法有信息增益和基尼指数。随机森林是决策树的集成方法,通过Bagging和随机特征选择构建多棵树并综合结果,能显著提高泛化能力,减少过拟合。文章还提供了Python代码示例,展示如何使用sklearn库实现这两种算法。
2025-08-05 18:49:22
1278
1
原创 【人工智能-17】机器学习:KNN算法、模型选择和调优、朴素贝叶斯分类
数据集非常大、训练模型速度慢时,追求快速评估和调优。初步实验。实际使用时,一般都用这个方法。至于为什么用,因为数据量太大了,使用这个方法可能都要花费很长的时间,别说k折和分层k折(时间成本和计算资源的花费太大)。跟保留交叉验证的缺点一对比,还是保留交叉验证好。数据集大小适中,需要更稳定、偏差更小的性能评估和超参数调优。分类问题,特别是数据集较小或存在明显类别不平衡时。确。
2025-08-01 19:18:32
896
1
原创 【人工智能-16】机器学习:概念、工具介绍、数据集、特征工程
这是一个python语言机器学习工具机器学习是一种思想,并不是指的此工具,此工具只是将有关机器学习的算法和操作封装起来。数据量小,数据在sklearn库的本地,只要安装了sklearn,不用上网就可以获取数据量大,数据只能通过网络获取特征工程:就是对特征进行相关的处理一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程特征工程是将任意数据(如文本或图像)转换为可用于机器学习的数字特征,比如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。
2025-08-01 16:50:20
1016
原创 【人工智能-15】OpenCV直方图均衡化,模板匹配,霍夫变换,图像亮度变换,形态学变换
本文介绍了三种OpenCV图像处理技术:直方图均衡化用于增强图像对比度,通过调整灰度分布突出细节;模板匹配用于在源图像中定位已知子图像,支持多种相似度度量方法;霍夫变换则用于检测图像中的直线和圆形等几何形状,对噪声和遮挡具有鲁棒性。每种技术都有其适用场景和优缺点,如直方图均衡化可能放大噪声,模板匹配对几何变换敏感等。文章详细说明了各技术的原理、实现方法及参数设置,为图像处理任务提供了实用的技术参考。
2025-07-31 22:07:58
1322
1
原创 【人工智能-14】OpenCV梯度处理、边缘检测、绘制轮廓、凸包检测、轮廓特征查找
摘要 本文介绍了OpenCV在图像梯度处理和边缘检测中的应用。首先阐述了图像梯度的概念,即通过卷积核计算像素差异来提取垂直和水平边缘(Sobel算子)。其次介绍了Laplacian算子,通过二阶差分检测边缘。最后详细讲解了Canny边缘检测的全流程,包括高斯模糊降噪、梯度计算、非极大值抑制和双阈值处理。文中提供了Python代码示例,展示了如何使用OpenCV的filter2D、Sobel、Laplacian和Canny函数实现这些功能。这些方法为图像特征提取和计算机视觉任务奠定了基础。
2025-07-27 14:41:36
712
原创 【人工智能-13】OpenCV插值方法,边缘填充,图像矫正,图像掩膜,图像融合与噪点消除
本文介绍了OpenCV中的图像处理技术,包括插值方法、边缘填充、图像矫正和图像掩膜。插值方法(如最近邻、双线性、像素区域、双三次和Lanczos插值)用于解决图像变换时的像素缺失问题。边缘填充技术(如边界复制、反射、常数填充等)可处理图像操作中的边缘空缺。图像矫正是通过透视变换改变观察视角,消除透视畸变。图像掩膜则用于选择性处理图像区域,通过与运算提取目标区域。这些技术为图像处理提供了灵活高效的解决方案。
2025-07-24 20:17:06
800
原创 【人工智能-12】OpenCV图像颜色转换,灰度化,二值化,图像翻转,仿射变换
本文介绍了OpenCV中色彩空间转换、灰度化和二值化的基础操作。主要内容包括:1)RGB、HSV等色彩空间的转换原理及实际应用;2)三种灰度化方法(最大值法、平均值法、加权均值)的实现;3)六种二值化方法(阈值法、反阈值法、截断阈值法、零处理、OTSU阈值法、自适应二值化)的原理和代码实现。文中通过示例代码详细演示了各种图像处理技术的具体应用,为计算机视觉领域的初学者提供了实用的基础知识。
2025-07-24 20:16:17
917
原创 【人工智能-11】OpenCV基础认知和使用
本文介绍了OpenCV在人工智能和计算机视觉中的基础应用。OpenCV作为开源跨平台计算机视觉库,具有多语言支持、丰富API等优势。文章详细讲解了图像的存储原理(8位三通道彩色图和单通道灰度图),并通过Python代码示例演示了图像读取、显示、保存、大小调整、图形绘制等基本操作,以及视频流的实时处理。这些基础内容为后续计算机视觉和深度学习应用奠定了重要基础,建议通过实践加深对OpenCV图像处理的理解。
2025-07-22 20:18:30
825
原创 【人工智能-10】三大库Numpy,Pandas,Matplotlib
Python数据科学三大核心库Numpy、Pandas和Matplotlib详解 本文介绍了Python数据科学领域的三大核心库:Numpy提供高效的数值计算功能,包括多维数组操作、广播机制和矩阵运算;Pandas基于Numpy构建,提供Series和DataFrame数据结构,擅长数据清洗、筛选和聚合分析;Matplotlib则专注于数据可视化。文章详细展示了Numpy的各种操作方法,包括数组创建、切片、广播、遍历、变形、转置、连接分割以及矩阵运算等核心功能。这三个库构成了Python数据分析和人工智能开
2025-07-22 19:02:42
602
原创 【人工智能-9】模块化编程概念(模块、包、导入)及常见系统模块总结和第三方模块管理
摘要 本文系统介绍了Python模块化编程的核心概念与实践方法。首先阐述了模块(.py文件)和包(包含__init__.py的文件夹)的定义与作用,详细解析了6种模块导入方式及其使用场景。其次梳理了Python内置模块(如os、sys、datetime)的常见功能,并提供了实用代码示例。最后讲解了第三方模块的安装管理方法,通过pip工具可灵活安装社区贡献的扩展库(如requests、numpy)。全文通过结构化知识体系帮助开发者构建清晰的代码组织逻辑,提升项目可维护性和开发效率。
2025-07-18 19:33:02
1138
原创 【人工智能-8】迭代器和生成器的区别及其各自实现方式和使用场景
摘要:本文详细介绍了Python中的迭代器和生成器。迭代器通过__iter__()和__next__()方法实现,支持惰性计算,常用于自定义遍历逻辑。生成器则使用yield关键字简化迭代器实现,自动保存状态,适用于数据流处理和无限序列。两者都支持惰性计算,但生成器代码更简洁。典型应用场景包括大数据处理、函数式编程等。文章还比较了两者的实现方式和适用场景,帮助开发者根据需求选择合适工具。
2025-07-17 18:09:26
1857
原创 【人工智能-7】类和对象的基本概念及属性和方法的常见分类和使用场景
本文介绍了Python中类和对象的核心概念。类作为创建对象的模板,包含属性(类属性和实例属性)和方法(实例方法、类方法和静态方法)。实例属性是对象特有的特征,而类属性是所有实例共享的。实例方法操作对象数据,类方法处理类级别操作,静态方法则是独立工具函数。文章还简要提及了魔术方法,用于自定义类的特殊行为。通过汽车、银行账户等实例演示了面向对象编程的基本用法,帮助理解类和对象在Python中的应用。
2025-07-16 20:03:21
2142
原创 【人工智能-6】递归函数及装饰器
本文介绍了Python中的递归函数和装饰器两大高级特性。递归函数通过终止条件和自我调用实现问题分解,通过斐波那契数列和阶乘示例演示其应用。装饰器部分首先讲解闭包概念,进而阐述装饰器本质、常见用途及实现方式,包括基本装饰器、带参装饰器和装饰器链。通过多个代码示例展示了装饰器在日志记录、函数增强等方面的实际应用,并详细解析了装饰器的执行机制。文章内容由浅入深,帮助读者掌握这些核心编程技术的原理和使用方法。
2025-07-15 19:09:59
2198
原创 【人工智能-5】函数的位置传参、关键词传参及其可变性和解包操作
本文介绍了Python函数参数的四种传参方式:1)位置传参,按参数顺序传递;2)关键词传参,指定参数名避免顺序问题;3)可变参数,包括位置可变参数(*args)和关键词可变参数(*kwargs),用于接收不定数量参数;4)解包操作(和),将序列或字典解包为多个参数。文章通过示例代码详细演示了每种传参方式的用法和特点,特别是可变参数和解包操作的灵活应用场景。这些传参方式为Python函数提供了强大的参数处理能力,使函数调用更加灵活和高效。
2025-07-14 18:49:28
474
原创 【人工智能-4】Python 推导式及 常见语句和内置函数
本文介绍了Python中的推导式、常见语句和内置函数。推导式部分展示了列表、字典和集合推导式的语法示例;常见语句包括条件判断、匹配、循环、异常处理、函数定义、导入和with语句;内置函数涵盖了输入输出、类型转换、数学运算和序列操作等常用功能。文章通过代码示例演示了各种语法结构的实际应用,为Python编程提供了实用的参考指南。
2025-07-14 18:47:50
476
原创 【人工智能-3】Python的复合类型之序列类型、映射类型、集合类型
本文介绍了Python中的序列类型和映射类型。序列类型分为不可变序列(如元组和range对象)和可变序列(如列表),详细讲解了它们的创建方法和基本操作。元组通过逗号创建,常用于解构赋值;range对象生成数字序列;列表支持增删改查等操作。映射类型主要介绍了字典,通过键值对存储数据,属于可变对象。文章通过代码示例展示了各种数据结构的实际应用,帮助读者掌握Python基础数据类型的使用方法。 (字数:149)
2025-07-13 17:17:11
900
原创 【人工智能-2】Python的基础变量之str类型和数字类型
本文介绍了Python中的变量概念和主要数据类型。变量本质是对象的名称标签,无需声明即可使用。重点讲解了字符串(str)和数字类型(int, float, complex): 字符串可用单/双/三引号定义,支持索引、切片、拼接等操作,提供find、replace等实用方法 数字类型包括整数、浮点数和复数,支持各种数学运算和进制转换 布尔型是整型的子类型,用于逻辑判断 文章还展示了字符串格式化输出(f-string和%占位符)以及数字运算的基本方法,为Python基础数据类型提供了详细的使用指南。
2025-07-12 20:06:38
415
原创 【人工智能-1】环境配置与必要软件安装
本文介绍了Python开发环境的安装与配置,重点讲解了Anaconda的下载安装注意事项(避免C盘安装)和清华镜像源的环境配置方法。文章详细说明conda环境管理操作,包括创建/激活/删除环境、包管理以及PyCharm、VSCode、Jupyter等IDE的环境配置技巧。通过清晰的步骤指引,帮助读者快速搭建Python开发环境,为后续学习Python基础数据类型(如str和数字类型)做好准备。
2025-07-11 19:58:37
604
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅