DS图—最小生成树

题目描述

根据输入创建无向网。分别用Prim算法和Kruskal算法构建最小生成树。(假设:输入数据的最小生成树唯一。)

输入

顶点数n

n个顶点

边数m

m条边信息,格式为:顶点1 顶点2 权值

Prim算法的起点v

输出

输出最小生成树的权值之和

对两种算法,按树的生长顺序,输出边信息(Kruskal中边顶点按数组序号升序输出)

#include<iostream>
using namespace std;

struct print { // print变量用于保存待打印的结果
	string str1, str2;
	int w;
};

struct { //保存邻接边信息
	int lowcost;
	int adjvex;
}shortEdge[20];

struct Edge { //边的新存储方式
	int from, to;
	int weight;
};

class Map {
private:
	bool* Visit; //记录是否被访问
	int** Matrix;
	int Vexnum;
	int Arcnum;
	int* parents; //各个顶点当作各个树,保存每个树的双亲顶点
	string* vex;
	print* temp; // 待打印的数组
	int pos; //prim的起点
	int sum = 0; //权值和
	Edge edge[20]; //边
	int find(string str); // 索引某个顶点
	int minEdge(); //查找邻接边的最小边
	int findRoot(int n);
	void InsertSort(); //插入排序
public:
	Map();
	~Map();
	void Prim();
	void Kruskal();
};

int Map::find(string str)
{
	for (int i = 0; i < Vexnum; i++)
		if (str == vex[i])
			return i;
}

Map::Map()// 初始化
{
	cin >> Vexnum;
	Visit = new bool[Vexnum];
	Matrix = new int* [Vexnum];
	vex = new string[Vexnum];
	parents = new int[Vexnum];
	temp = new print[Vexnum];
	for (int i = 0; i < Vexnum; i++)
	{
		cin >> vex[i];
		Matrix[i] = new int[Vexnum];
		Visit[i] = false;
		parents[i] = -1;
		for (int j = 0; j < Vexnum; j++)
			Matrix[i][j] = 99999;
	}
	cin >> Arcnum;
	for (int i = 0; i < Arcnum; i++)
	{
		string str1, str2;
		int w;
		cin >> str1 >> str2 >> w;
		Matrix[find(str1)][find(str2)] = w; //prim双向保存边
		Matrix[find(str2)][find(str1)] = w;
		if (find(str1) > find(str2)) {// kruskal单向保存边
			edge[i].from = find(str2);
			edge[i].to = find(str1);
		}
		else {
			edge[i].from = find(str1);
			edge[i].to = find(str2);
		}
		edge[i].weight = w;
	}
	string str;
	cin >> str;
	pos = find(str);
}

int Map::minEdge()
{
	int min = 9999, j = 0;
	for (int i = 0; i < Vexnum; i++) {
		if (shortEdge[i].lowcost && shortEdge[i].lowcost < min) {
			min = shortEdge[i].lowcost;
			j = i;
		}
	}
	return j;
}

void Map::InsertSort()
{
	int j;
	Edge temp;
	for (int i = 1; i < Arcnum; i++) {
		if (edge[i].weight < edge[i - 1].weight) {
			temp = edge[i];
			for (j = i - 1; j >= 0 && edge[j].weight > temp.weight; --j) {
				edge[j + 1] = edge[j];
			}
			edge[j + 1] = temp;
		}
	}
}

void Map::Prim()
{
	for (int i = 0; i < Vexnum; i++) {// 起点的邻接边信息
		shortEdge[i].lowcost = Matrix[pos][i];
		shortEdge[i].adjvex = pos;
	}
	shortEdge[pos].lowcost = 0; //置0表已纳入树
	Visit[pos] = true;
	for (int i = 0; i < Vexnum - 1; i++) {
		int k = minEdge(); //最小邻接边位置
		temp[i].str1 = vex[shortEdge[k].adjvex];
		temp[i].str2 = vex[k];// 先保存再打印
		temp[i].w = shortEdge[k].lowcost;
		sum += shortEdge[k].lowcost;
		shortEdge[k].lowcost = 0;//置0表已纳入树
		for (int j = 0; j < Vexnum; j++) { //在矩阵第k行找更短边,更新shortedge
			if (Matrix[k][j] < shortEdge[j].lowcost) {
				shortEdge[j].lowcost = Matrix[k][j];
				shortEdge[j].adjvex = k;
			}
		}
	}
	cout << sum << endl;
	cout << "prim:" << endl;
	for (int i = 0; i < Vexnum - 1; i++) {
		cout << temp[i].str1 << ' ' << temp[i].str2 << ' ' 
			<< temp[i].w << endl;
	}
}

int Map::findRoot(int n)
{
	int t = n;
	while (parents[t] > -1)
		t = parents[t];
	return t;
}

void Map::Kruskal()
{
	cout << "kruskal:" << endl;
	InsertSort();
	for (int num = 0, i = 0; i < Arcnum; i++) {
		int vex1 = findRoot(edge[i].from); // 找出某条边两端的根结点
		int vex2 = findRoot(edge[i].to);
		if (vex1 != vex2) {//根节点不同表示加入该边不会形成环
			cout << vex[edge[i].from] << ' ' 
				<< vex[edge[i].to] << ' ' 
				<< edge[i].weight << endl;
			parents[vex2] = vex1;
			num++;
			if (num == Vexnum - 1)
				return;
		}
	}
}

Map::~Map()
{
	delete[]vex;
	delete[]Visit;
	for (int i = 0; i < Vexnum; i++)
		delete Matrix[i];
	delete[]Matrix;
}

int main()
{
	Map map;
	map.Prim();
	map.Kruskal();
	system("pause");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值