实验:循环赛日程表

一、实验目的及要求

循环赛日程表

二、实验原理与内容

      学会用二分策略递归算法解决循环赛日程表。

三、实验软硬件环境

IntelliJ IDEA 2022.3.2

四、实验过程(实验步骤、记录、数据、分析)

代码:

import java.util.Scanner;
import java.lang.Math;
class TEST1 {

    public static void main(String[] args) {
        int[][] a = new int[50][50];
        int k,i,j;
        int n = 1;
        Scanner scanner = new Scanner(System.in);
        System.out.println("现有2^k个运动员,求比赛日程,请输入 k 的值");
        k = scanner.nextInt();
        //得出比赛人数n
        for(i = 1;i <= k;i = i + 1){
            n = n * 2;
        }
        aaa(1,n,n,a);
        for (i = 1;i <= n;i = i + 1)
        {
            System.out.println("");
            for(j = 1;j <= n;j = j + 1)
                System.out.print(a[i][j] + " ");
        }
    }

    public static void aaa(int i, int j, int n, int a[][]){
        int k1;
        int k2;
        if(n == 2){
            a[i][n] = j;
            a[j][n] = i;
            a[i][n - 1] = i;
            a[j][n - 1] = j;
        }else{
            //处理左上角数据
            aaa(i,i + n / 2 - 1,n / 2,a);
            //处理左下角数据
            aaa(i + n / 2,j,n / 2,a);
            for (k1 = n;k1 > n / 2;k1 = k1 -1){
                //处理右上角数据
                for (k2 = i;k2 <= i - 1 + n / 2;k2 = k2 + 1)
                    a[k2][k1] = a[k2 + n / 2][k1 - n / 2];
                //处理右下角数据
                for(k2 = i + n / 2;k2 <= i - 1 + n;k2 = k2 + 1)
                    a[k2][k1] = a[k2 - n / 2][k1 - n / 2];
            }
        }
    }
}

以n=4为例,结果截图:

五、实验结论与体会

问题一、以n=4(人数为4)为例,列举else部分代码的执行过程。

问题二、解析算法一(分治算法)的递归方程的时间复杂度,为什么是O(n^2)。

       每次递归都将选手数量减半,直到只剩下两个选手时可以直接确定他们的比赛日程。在非递归(迭代)实现中,我们需要遍历所有选手和比赛日来填写日程表。这通常涉及双重循环,其中外层循环遍历选手,内层循环遍历比赛日。因此,对于 n 个选手和 n-1 天的比赛,需要进行接近于 n^2 次的基本操作,涉及到了双重循环,这些操作的次数与选手数量的平方成正比,因此时间复杂度为 O(n^2)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值