今天我给大家带来杨氏矩阵的数字查找。
什么是杨氏矩阵呢?
杨氏矩阵,是对组合表示理论和舒伯特演算很有用的工具。它提供了一种方便的方式来描述对称和一般线性群的群表示,并研究它们的性质。有一个二维数组. 数组的每行从左到右是递增的,每列从上到下是递增的.。今天我要分享的是在这样的数组中查找一个数字是否存在,并且时间复杂度小于O(N)。
当时间复杂度小于O(N)时,那证明我们不能通过遍历数组的方法去找到那个数字。所以我们需要需要时间更短的方法来实现。
而杨氏矩阵从左到右是递增的,从上到下也是递增的。因此每一行的最后一个数字的一行中最大的数。假设我们创建了这样一个二维数组
// 1 2 3
// 4 5 6
// 7 8 9
再假设我们要找的数字为7,首先我们先拿3和7做比较发现3比7小就意味着第一行我们不用再看了,因为3是第一行中最大的。然后再与第二行的最后一个数字比较,发现7依然比6大,因此第二行也不用去与7做比较了。以此类推,等到7比一行的最后的数字小时,我们再将列数-1向前比较。
大概思路就是这样的,那么如何使用代码来实现呢?
#include<stdio.h>
void find_num(int arr[3][3],int k,int r,int c)
{
int i = 0;
int j = c - 1;
while(i<r&&j>=0)
{
if (arr[i][j] > k)
{
j--;
}
else if (arr[i][j] < k)
{
i++;
}
else
{
printf("找到了下标为%d,%d", i, j);
break;
}
}
}
int main()
{
int arr[3][3] = {1,2,3,4,5,6,7,8,9};
int k = 0;
scanf("%d", &k);
find_num(arr, k, 3, 3);
return 0;
}
但是这种方法固然可行但是找到的数字下标是在函数中打印的,我们能不能有一种方法去让函数将这两个数字给带回来,在主函数中打印呢?
答案是有的,我们可以将该函数的返回类型改为结构体类型,返回一个结构体变量即可。也可以存入数组,返回数组地址。但我要介绍的是从函数参数上来改动。我们可以将数组的行列数放入int型变量中,在调用函数时取两个变量的地址,这样在函数中两个变量的就不再是传入数据的一份临时拷贝了,可以改变变量的值。下面就是实现代码:
void find_num(int arr[4][4], int k, int* x, int* y)
{
int a = 0;
int b = *y-1;
while(a<=*x-1&&b>=0)
{
if (arr[a][b] > k)
{
b--;
}
else if (arr[a][b] < k)
{
a++;
}
else
{
*x = a;
*y = b;
}
}
}
int main()
{
int x = 3; //
int y = 3; //
int k = 0;
scanf("%d", &k);
int arr[4][4] = { 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 };
find_num(arr, k, &x, &y);
printf("%d %d\n", x, y);
return 0;
}
以上就是我今天分享的内容。
若有错误请各位大佬指正!!!