最新大模型算法的研究进展与应用探索

目录

一、引言

二、大模型算法的最新研究进展

(一)强化学习算法的突破

(二)多模态融合的发展

三、大模型算法的应用案例

(一)金融领域

(二)医疗领域

(三)气象领域

(四)制造业

四、大模型算法面临的挑战

(一)数据隐私和安全问题

(二)算力需求与成本

(三)算法可解释性

五、未来发展趋势

(一)模型优化与精简

(二)跨领域应用

(三)开源与社区合作

(四)强化学习的深度应用

(五)大模型数据半自动化标注

六、结论

七、参考文献


摘要:本文全面且详细地介绍了大模型算法的最新研究进展,涵盖强化学习、多模态融合等领域的前沿突破,并辅以丰富的数据和图像说明。深入探讨了这些算法在金融、医疗、气象、制造业等不同领域的广泛应用案例及其带来的变革,同时细致分析了当前面临的数据隐私和安全、算力需求与成本、算法可解释性等挑战,以及模型优化与精简、跨领域应用、开源与社区合作等未来的发展趋势。

关键词:大模型算法;强化学习;多模态融合;行业应用;人工智能

一、引言

大模型算法在人工智能领域占据着至关重要的地位。随着科技的飞速发展,其在各行业展现出了广泛的应用前景。大模型凭借其强大的数据处理和学习能力,能够从海量数据中挖掘有价值的信息,为各行业的决策和发展提供有力支持。例如在金融领域可进行风险评估和投资决策,在医疗领域辅助疾病诊断和药物研发等。因此,深入研究大模型算法的最新进展和应用具有重要的现实意义。

二、大模型算法的最新研究进展

(一)强化学习算法的突破

字节跳动提出的 DAPO 算法是强化学习领域的一项重要突破。该算法通过解耦裁剪与动态采样策略优化,显著提升了大语言模型的推理能力。在 AIME 2024 评测中,DAPO 算法达到了 50 分性能指标,这表明其在大语言模型推理方面具有出色的表现,为强化学习在大模型中的应用提供了新的思路和方法。

此外,用大模型来辅助强化学习成为新的研究方向。强化学习(RL)在现实复杂应用中存在数据获取困难、样本利用率低等问题,而大语言模型(LLM)具有超强的多任务学习、通用世界知识目标规划以及推理能力。来自香港中文大学(深圳)的团队调研了 130 余篇大语言模型及视觉 - 语言模型(VLM)在辅助强化学习(LLM - enhanced RL)方面的最新研究进展。LLM - enhanced RL 指利用已预训练、内含知识的 AI 模型的多模态信息处理、生成、推理等能力来辅助 RL 范式的各种方法,具有多模态信息理解、多任务学习和泛化、样本利用率提高、长期轨迹规划能力、奖励信号生成能力等特性。LLM 在其中可扮演信息处理者、奖励设计者、决策者、生成者等角色,未来潜在应用包括机器人、自动驾驶、电力系统能量管理等领域。

(二)多模态融合的发展

多模态大模型在图像、文本、语音等多模态数据融合方面取得了显著进展。以 DeepMind 的 AlphaFold2 为例,它在生物医学领域展现了强大的应用潜力。AlphaFold2 能够准确预测蛋白质的三维结构,这对于理解蛋白质的功能、药物研发等具有重要意义。通过融合多种模态的数据,多模态大模型能够更全面、深入地理解和处理信息,为解决复杂问题提供了更有效的手段。

2025 年多模态大模型呈现出从单一模态到高级模态融合的趋势。文生图与文生视频方面,Stable Diffusion (SD) 和 FLUX 等文生图模型进一步优化生成质量与效率,SD 可通过文字描述生成高分辨率、细节丰富的图像,广泛应用于艺术创作等领域;文生视频模型如 CogVideoX 和 SoRA 能根据文本生成高质量视频内容,降低了视频制作门槛。语音合成与图文理解方面,CosyVoice 系列和 ChatTTS 等语音合成模型实现更自然、更具表现力的语音生成,GLM - Edge 和 CogVLM 等图文理解模型能更好地处理跨模态信息,如 CogVLM 可应用于智能医疗诊断,通过分析医学影像和病历文本提供精准诊断建议。

同时,关于深度多模态数据融合也有新的研究成果。传统的多模态数据融合分类法(早期/晚期融合等)已不适合现代深度学习时代,有研究提出了一种新的细粒度分类法,将最先进 (SOTA) 模型分为编码器 - 解码器方法、注意力机制方法、图神经网络方法、生成神经网络方法和其他基于约束的方法五类。该研究涵盖了更广泛的模态组合,如视觉 + 语言、视觉 + 传感器等,以及它们对应的任务,并对这些方法进行了比较,还探讨了该领域的挑战和未来方向。

三、大模型算法的应用案例

(一)金融领域

BloombergGPT 金融大模型通过大规模金融数据集训练,显著提升了金融文本处理和分析能力。它能够对金融新闻、报告等文本进行快速准确的分析,为金融机构提供市场趋势预测、风险评估等服务,有助于金融决策的科学性和准确性。此外,国外银行业在大模型技术应用上也有诸多实践。如 Tonik 银行在其移动应用中推出生成式 AI 聊天机器人,减少客户等待时间,提高服务响应速度;NatWest 银行利用 IBM 的企业级人工智能和数据平台 Watson X 创建虚拟助理 Cora +,为客户提供更具互动性和对话性的体验。国内银行如工商银行基于大模型打造的 ChatDealing 产品建设报价员助手,依托量化策略模型,为小额交易提供智能报价,实现对客交易效率提升 3 倍,询价交易笔数同比增长 40%,带来利润超亿元。

(二)医疗领域

谷歌的 Med - PaLM M 多模态生成模型在医学影像和临床语言理解方面表现出色,接近人类专家水平。它可以对医学影像进行准确分析,辅助医生进行疾病诊断,同时能够理解临床文本信息,为医疗决策提供支持。此外,国产 AI 大模型在医疗行业也有广泛应用。百度灵医大模型通过 API 或插件嵌入的方式,在 200 多家医疗机构中展开应用,显著提升了诊断的准确性和效率;医联推出的 MedGPT 大模型,基于 Transformer 架构,参数规模达到 100B(千亿级),预训练阶段使用了超过 20 亿的医学文本数据,致力于实现疾病预防、诊断、治疗到康复的全流程智能化诊疗。

在药物研发方面,晶泰科技的 XpeedPlay 平台利用大模型技术,超高速生成苗头抗体,加速了药物的研发流程;智源研究院研发的全原子生物分子模型 OpenComplex 2 能有效预测蛋白质、RNA、DNA、糖类、小分子等复合物,可以提升药物研发的效率;腾讯“云深”(iDrug)平台也已同时具备了小分子药物与大分子药物的加速发现能力。在医学影像分析领域,首都医科大学附属北京天坛医院联合北京理工大学团队合作推出“龙影”大模型(RadGPT),基于该模型研发的首个“中文数字放射科医生”“小君”已经实现通过分析 MRI 图像描述快速生成超过百种疾病的诊断意见,平均生成一个病例的诊断意见仅需 0.8 秒。在医疗质控方面,惠每科技推出的医疗大模型在病历质控场景中的应用可以模拟人工专家,自动分析病历文书中存在的内涵缺陷,并通过 CDSS 推送缺陷问题和修改意见,供医生修改病历进行参考;信创海河实验室的医疗影像质控大模型可以迅速检测 X 光片在拍摄时有没有摆位不正等问题,及时调整,让得到的影像更清晰,避免重复检查或减少后续的检查步骤。在患者服务方面,百度文心大模型与灵医大模型合力支撑的 AI 药品说明书,既支持患者阅读药品说明,也支持患者通过文字、语音的方式向其进行提问,大模型支撑下会根据患者的输入内容自动生成结果,并借助药师/医生的虚拟形象进行辅助回答。在医院管理方面,万仞智慧发布的董奉大模型覆盖全病程的大模型应用,实现医疗资源的智能高效配置,为医护群体提供「初级医护指引」「病例校验质检」等智能应用引擎,减轻医护工作负担,同时为医院管理体系提供[国家医疗绩效考核」「方案综合费用控制」等需深度定制的功能,支持助力提升国家公立医院在医疗绩效考核中的表现,加强对医疗资源的有效管理与合理配置。在教学科研方面,医渡科技大模型基于超过千亿精细化 Token 训练,满足高质量数据要求和精细化数据处理,为医学科研、临床辅助等方面进行赋能,新一代科研数据平台能够从 AI 阅读总结文献、自然语言病历搜索到智能数据加工、自动化统计分析、论文初稿智能生成等全面支持临床科研人员,将科研产出论文周期从 6 - 12 个月加速至 1 - 2 月。在中医智能化方面,天士力医药集团与华为云联合发布的“数智本草”中医药大模型,集守正、创新、产业化三大类数据,为中医药研究提供有力支持,该大模型拥有 380 亿参数量,基于中医药海量文本数据预训练,结合向量库检索强化,以及中药研发多场景的微调,能够更好地帮助研究者完成中医药理论证据的挖掘和总结,推动中医药现代化发展。在公共卫生方面,中国科学家应用自适应 AI 模型和多源数据,预测重庆市流感活动度,该研究成果由平安科技、平安智慧城市与重庆市疾病预防控制中心、陆军军医大学和清华大学联合完成,是中国首个基于 AI 和大数据的流感实时预测模型。

(三)气象领域

华为盘古气象大模型通过 AI 推理实现秒级全球气象预报,显著提高了气象预测的精度和效率。它能够快速处理大量的气象数据,准确预测气象变化,为气象灾害预警、农业生产、航空航天等领域提供重要的气象信息支持。另外,由上海和今信息科技有限公司与四川省气象探测数据中心共建的气象数据智能体示范应用,基于和鲸科技旗下可承载 DeepSeek 全生命周期应用的 ModelWhale 平台,为气象数据中心本地部署了 32B ChatGLM 基座模型和小参数模型,搭建了气象数据查询智能体应用。该智能体可对接千余气象种数据要素,并以 API、对话机器人、网页嵌入、浏览器插件等多种形式融入四川气象一体化平台内部业务和流程中,将原本耗时数小时的人工流程大幅缩短至分钟级别,完成从气象数据查询 - 可视化 - 数据报告的全流程闭环。问答式交互方面,智能体采用自然语言问答的方式,帮助业务人员快速获取气象数据,气象业务人员只需通过简单的语言描述需求,智能体即可理解意图并执行数据查询,无需复杂的操作流程;多源数据整合方面,智能体整合了实况数据、历史数据、预报数据等多种气象数据源,满足不同场景下的查询需求,为气象业务人员提供全面的数据支持;智能检索方面,基于大语言模型的智能检索功能,智能体能够根据业务人员提供的关键词,快速匹配相关数据,并进行筛选和排序,提供精准的查询结果;可视化展示方面,查询结果以图表形式直观展示,方便气象业务人员快速理解和分析数据,提升工作效率。气象大数据云平台拥有 2500 余种气象服务数据、2000 余个数据要素、1000 余个数据接口(如图 2 所示)。

(四)制造业

创新奇智工业大模型赋能制造业,实现智能质检和预测性维护。在智能设计与仿真优化方面,大模型通过分析历史设计数据与物理仿真结果,可加速产品迭代周期,如海尔集团的 BaaS 工业大脑通过大模型优化家电结构设计,材料利用率提升 12%。在预测性维护与设备管理方面,结合设备传感器数据与运维记录,大模型实现故障的早期预警,如容知日新的 PHMGPT 模型在钢铁厂应用中,将非计划停机时间减少 40%。在智能制造与质量控制方面,大模型在多模态数据融合场景中展现出显著优势,如采用 Transformer 架构处理高分辨率图像,识别微米级缺陷,准确率可达 99.7%;基于物理约束的深度学习模型动态调整注塑温度、压力参数,产品不良率降低 18%。在供应链与生产调度方面,大模型的全局优化能力助力企业应对复杂供应链挑战,如在半导体制造中,大模型结合强化学习实现晶圆厂机台分配优化,产能利用率提高 15%。

工业大模型的技术架构具有通用性、泛化性和可扩展性等特点,其构建通常采用预训练工业大模型、领域微调、检索增强生成(RAG)三种模式。例如鞍钢集团结合星云语言大模型与私域知识库,实现制度文档的智能问答,效率提升 60%。

四、大模型算法面临的挑战

(一)数据隐私和安全问题

在大规模数据训练中,保护用户数据隐私是一个重要挑战。大模型训练需要大量的数据,这些数据可能包含用户的敏感信息,如个人身份、健康状况、财务信息等。一旦这些数据被泄露或滥用,将给用户带来严重的损失。例如,生成式人工智能大模型在预训练阶段需要海量的数据,若这些数据被恶意篡改或污染,将直接影响模型的输出结果,产生严重的安全隐患。此外,模型的生成能力还可能被滥用于制造假新闻以及深度伪造等,对社会安全稳定构成威胁。

面对这些安全挑战,学术界和产业界开始探索相应的应对措施。DeepMind 公司提出了“可控生成”(Controlled Generation)的概念,通过对模型施加额外的约束条件,使其生成内容符合特定要求。微软研究院则提出了一种基于强化学习的方法,通过惩罚模型生成有害内容的行为,引导其学习生成安全合规的内容。同时,我国也先后推出了一系列相关法律法规,如《互联网信息服务算法推荐管理规定》《互联网信息服务深度合成管理规定》《生成式人工智能服务管理暂行办法》等,旨在加强算法科研治理,规范智能技术供给,健全算法推荐机制、算法安全体系和促进深度合成技术安全可信发展,推进算法综合治理、深度合成治理、净化网络空间,以良法善治为清朗网络空间构建法治屏障。

(二)算力需求与成本

大模型训练需要大量的计算资源,这限制了其在一些资源有限的场景中的应用。训练大模型通常需要数百至数千个 GPU 等高端硬件配置,以及大量的电力支持,这不仅增加了硬件采购成本,还带来了高额的能源消耗成本。例如,若要对一个 5000 亿参数规模的单体大模型进行充分训练,所需算力基础设施约在 10 亿美元规模,每年消耗的电费在 5.3 亿元人民币。对于一些中小企业和研究机构来说,难以承担如此高昂的算力成本,从而限制了大模型的推广和应用。

为了应对算力挑战,提高算力效率的技术手段包括模型结构、训练方法的持续改进以及工程上的优化,如分布式推理和混合专家模型。浪潮信息发布的“源 2.0 - M32”开源大模型采用基于注意力机制的门控网络技术,构建包含 32 个专家的混合专家模型,提升了模型算力效率,模型运行时激活参数为 37 亿,在业界主流基准评测中性能全面对标 700 亿参数的 LLaMA3 开源大模型。此外,中国工程院院士郑纬民建议利用已有超算系统的空余算力来训练大模型,降低大模型训练成本。

(三)算法可解释性

复杂的模型结构使得算法的决策过程难以解释,这在一些对安全性要求较高的领域(如医疗、金融)是一个关键问题。在医疗领域,医生需要了解模型做出诊断的依据,以便进行准确的判断和决策;在金融领域,监管机构和投资者需要清楚模型进行风险评估和投资决策的逻辑,以确保金融系统的稳定和安全。然而,目前大多数大模型是基于深度学习的黑箱模型,其内部的决策机制难以理解和解释,这给其在高安全性要求领域的应用带来了障碍。

可解释人工智能技术大致可以分为基于数据的可解释性、基于模型的可解释性和基于结果的可解释性三大类。常见的模型可解释性方法包括可视化、消融实验(Ablation study)和对输入输出的静态分析等。基于模型自身的可解释性方面,有 Explanation Generation 和 Prototype Network 等典型方法,例如 VQA explanation 即在训练模型的同时训练一个语言的解释器,让模型不仅输出结果,还能对结果进行解释,以帮助我们更好地了解模型是否真的理解了输入信息。有研究对多模态大模型可解释性从数据、模型、训练与推理三个维度进行了全面阐述(如图 3 所示)。

五、未来发展趋势

(一)模型优化与精简

通过模型压缩和优化技术,使大模型在保持性能的同时更加轻量级。例如,Phi - 4 等小参数模型通过模型压缩、知识蒸馏等技术,在保持高性能的同时显著降低了计算资源需求。它可以在边缘设备上运行,实现实时语音识别和图像分类,应用于智能家居和工业物联网等领域。轻量化模型不仅降低了硬件门槛,还提高了模型的部署灵活性,将推动 AI 技术在资源受限的边缘设备和移动端设备上的普及。

(二)跨领域应用

探索大模型在更多领域的应用,如自动驾驶、元宇宙等。在自动驾驶领域,大模型可以融合视觉、语音和传感器数据,实现更精准的环境感知和决策规划,提高自动驾驶的安全性和可靠性。在元宇宙领域,大模型可以用于生成虚拟场景、人物形象和交互内容,为用户提供更加丰富、真实的沉浸式体验。此外,大模型在机器人、电力系统能量管理等领域也有潜在的应用前景。在机器人领域,利用多模态理解能力和推理能力,LLM - enhanced RL 可以提升人 - 机器的交互效率,帮助机器人理解人类需求逻辑,提高任务决策和规划能力;在电力系统能量管理领域,大模型可以帮助设计多目标函数与提高样本利用效率。

(三)开源与社区合作

通过开源模型和数据集,促进学术界和工业界的协同创新。开源可以让更多的研究者和开发者参与到大模型的研究和开发中,加速技术的进步和创新。同时,开源也有助于建立统一的标准和规范,提高大模型的互操作性和可扩展性。例如,中国信息通信研究院开启「可信开源大模型案例汇编(第一期)」的案例征集计划,促进大中小企业融通,扩展开源人工智能大模型、行业大模型服务千行百业的应用场景。

(四)强化学习的深度应用

从强化训练到强化微调,大模型与强化学习的结合将更加深入。目前的工作大多集中在通用强化学习,未来针对特定强化学习分支,如多代理强化学习、安全强化学习、迁移强化学习和可解释强化学习等的研究将增多。大模型可以在强化学习中扮演信息处理者、奖励设计者、决策者、生成者等多种角色,提升强化学习在复杂应用下的学习表现。

(五)大模型数据半自动化标注

从强手工标注到大模型半自动化标注,将提高数据标注的效率和质量。随着大模型技术的发展,利用大模型进行数据标注可以减少人工标注的工作量,同时提高标注的准确性和一致性,为大模型的训练提供更优质的数据。

六、结论

大模型算法在近年来取得了显著的进展,在强化学习、多模态融合等方面有了重要突破,并在金融、医疗、气象、制造业等多个领域得到了广泛应用,为各领域的发展带来了深刻变革。然而,大模型算法也面临着数据隐私和安全、算力需求与成本、算法可解释性等挑战。未来,通过模型优化与精简、跨领域应用、开源与社区合作、强化学习的深度应用、大模型数据半自动化标注等发展趋势,大模型算法有望在更多领域发挥更大的作用。为了推动大模型算法的进一步发展,未来的研究可以重点关注以下方向:加强数据隐私保护技术的研究,降低大模型的算力需求和成本,提高算法的可解释性,以及促进大模型在新兴领域的应用探索等。

七、参考文献

  1. 徐明. 生成式人工智能大模型的安全挑战与治理路径研究[J]. 信息通信技术与政策, 2025, 51(1): 10 - 19.
  2. 《A Systematic Survey on Large Language Models for Algorithm Design》,论文地址:https://arxiv.org/abs/2410.14716
  3. 2025 年大模型技术发展趋势展望:高速旋转的飞轮[EB/OL]. 2025年大模型技术发展趋势展望:高速旋转的飞轮-CSDN博客
  4. 国产 AI 大模型在医疗行业的应用:10 大场景典型案例全解析[EB/OL]. 国产AI大模型在医疗行业的应用:10大场景典型案例全解析!_国产ai医疗大模型核心产品对比分析,医院视角对于ai医疗大模型的需求观点-CSDN博客
  5. 大模型技术在工业制造领域的应用深度解析[EB/OL]. 大模型技术在工业制造领域的应用深度解析_工业大模型-CSDN博客
  6. 四川气象数据智能体示范应用入围中国信通院“开源大模型 +”典型案例[EB/OL]. 四川气象数据智能体示范应用入围中国信通院“开源大模型+”典型案例_人工智能_ModelWhale_InfoQ写作社区
  7. 国内外银行大模型应用对比:技术路线、落地场景以及 23 个国外典型案例[EB/OL]. 国内外银行大模型应用对比:技术路线、落地场景以及23个国外典型案例 - 53AI-AI知识库|大模型知识库|大模型训练|智能体开发
  8. 打开 AI 的黑盒子:模型可解释性的现状、应用前景与挑战[EB/OL]. 打开AI的黑盒子:模型可解释性的现状、应用前景与挑战_AI&大模型_邱天_InfoQ精选文章
  9. 预见 2025:《2025 年中国大模型行业全景图谱》(附市场规模、竞争格局和发展趋势等)[EB/OL]. https://www.qianzhan.com/analyst/detail/220/250418 - c45ee160.html
  10. 报告下载丨一文看尽:国内开源大模型案例汇总、发展趋势展望[EB/OL]. 报告下载丨一文看尽:国内开源大模型案例汇总、发展趋势展望 - 智源社区
  11. 【最新综述】详解‘大模型 + 强化学习’的四条主流技术路线[EB/OL]. 【最新综述】详解‘大模型+强化学习’的四条主流技术路线_强化学习论文路线-CSDN博客
  12. 学术最前沿!2024 最新深度多模态数据融合综述来袭![EB/OL]. 学术最前沿!2024最新深度多模态数据融合综述来袭!_多模态数据融合研究进展-CSDN博客
  13. 直面大模型“大成本”挑战,如何提高算力效率?[EB/OL]. 直面大模型“大成本”挑战,如何提高算力效率?_腾讯新闻
  14. 中国大模型行业 2025 展望:界石万重,共赢未来[EB/OL]. 中国大模型行业2025展望:界石万重,共赢未来 - 中国日报网
  15. 决策过程是魔法还是科学?首个多模态大模型的可解释性综述全面深度剖析[EB/OL]. 决策过程是魔法还是科学?首个多模态大模型的可解释性综述全面深度剖析_多模态大模型 可解释性-CSDN博客
  16. 重磅干货!2024 年大模型总结与展望(技术上篇)[EB/OL]. 重磅干货!2024年大模型总结与展望(技术上篇) - 53AI-AI知识库|大模型知识库|大模型训练|智能体开发
  17. 2024 - 2025 年中国 AI 大模型市场现状及发展趋势研究报告[EB/OL]. 艾媒咨询 | 2024-2025年中国AI大模型市场现状及发展趋势研究报告(附下载)-艾媒网-全球新经济行业数据分析报告发布平台
  18. 从社区数据看大模型开发生态的全景与趋势[EB/OL]. 从社区数据看大模型开发生态的全景与趋势_AI&大模型_InfoQ精选文章
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值