如何在Pycharm中插入AI插件(OpenAI及DeepSeeK)

1.首先在pycharm找到ai插件,安装

注:有时叫codeGPT,有时叫proxy  AI,其实都是同个插件来的;可以通过logo来确认。

2.安装成功后,会在设置-工具里出现CodeGPT

步骤:选择CodeGPT,选择custom open AI

选择open ai,输入api key,输入url

api key可以通过DeepSeek的api网址里面自己创建输入,下面会附上如何创建;

url可以通过首次调用 API | DeepSeek API Docs里的建议网址,进行输入;

3.填写后,会自动重启,或自行重启pycharm

 

注释:附DeepSeek的API创建方式

https://www.deepseek.com/

注意:密匙一定要先保存好!!再打开可就是看不到完全的了!

首次调用 API | DeepSeek API Docs

 

4.最后效果显示

需注意的是,该插件的gpt只有free版本才可以免费使用;

免费使用选中类型下角,可以选deespeek coder v2-free版本或者gpt-4o mini-free进行使用,

你就可以开启对话啦!

效果如示下,

 

 

 

### 如何在 PyCharm 中集成 AI 开发环境或插件 #### 安装必要的软件包和支持库 为了使 PyCharm 支持更复杂的机器学习和深度学习任务,建议先安装一些常用的 Python 库。这些库包括但不限于 TensorFlow, Keras, PyTorch 等框架以及 NumPy 和 pandas 这样的基础数据处理库[^2]。 ```bash pip install numpy pandas tensorflow keras pytorch ``` #### 插入 AI 相关的代码片段 当涉及到具体的应用场景时,在 PyCharm 的编辑器里可以直接编写与特定领域相关的算法实现。例如下面是一个简单的神经网络定义: ```python import torch from torch import nn class SimpleNN(nn.Module): def __init__(self): super(SimpleNN, self).__init__() self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28 * 28, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 10) ) def forward(self, x): x = self.flatten(x) logits = self.linear_relu_stack(x) return logits ``` #### 配置 Bito AI 插件 对于希望进一步提升工作效率的人来说,可以通过安装专门设计用于增强 IDE 功能性的第三方插件来达到目的。以 Bito AI 为例,该插件提供了一系列智能化特性,旨在优化编程体验并促进高质量代码产出[^3]。 要开始使用这个插件,需按照官方文档中的指导完成初步设置过程——即下载并激活对应版本之后重启应用程序即可生效。 #### 利用内置工具和服务 除了上述方法外,PyCharm 自身也集成了许多有助于加速 AI/ML 工作流的功能模块。比如支持 Jupyter Notebook 文件(.ipynb),允许用户在同一界面内运行交互式的 Python 脚本;还有图形化的调试面板可以帮助开发者更好地理解程序执行逻辑及其性能瓶颈所在之处。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值