二叉树的基本定义
简而言之:二叉树就是度不能超过2的树(每个树只能有两个节点)
满二叉树:
一个二叉树,如果每一个层的结点树达到最大值,则在这个树就是满二叉树
完全二叉树:
叶结点只能出现在最下层和次下层,并且最下面那一层的结点都集中在该层最左边的若干位置的二叉树
二叉查找树:
二叉查找树是一种特殊的二叉树,相对较小的值保存在左结点中,较大的值保存在右结点中。
根据对图的观察,我们发现二叉树其实就是由一个一个的结点及其之间的关系组成的,按照面向对象的思想,我们设计一个结点来描述结点这个事务。
首先我们先想着实现二叉树需要一些什么参数?
private static class Node{
public Node left;
public Node right;
public Integer key;
public String value;
public Node(Node left, Node right, Integer key, String value) {
this.left = left;
this.right = right;
this.key = key;
this.value = value;
}
}
在上面我们定义了left,right,key,value四个参数,并且定义了这个类的构造方法
我们看插入方法put思想:
- 如果当树中没有任何一个结点,则直接把新结点当根结点使用
- 如果当前树不为空,就从根结点开始
2-1:如果要查询的key,小于当前结点的key,则继续查找当前结点的左子结点2-2:如果新结点的key大于当前结点的key,则继续找当前结点的右子结点2-3:如果新结点的key等于当前结点的key,则树中已经存在这样的结点,替换该结点的value值就好
那么我们要怎么实现呢?
//向树中插入一个键值对
public void put(Integer key,String value){
root=put(root,key,value);
}
//给指定的数x添加一个键,添加一个键值对,并返回添加后的新数
private Node put(Node tree,Integer key,String value){
if(tree==null){
//个数加1
n++;
//直接把新结点当成根结点使用
return new Node(null,null,key,value);
}
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的右子结点
if(key > tree.key){
tree.right=put(tree.right,key,value);
}else if(key<tree.key){
//新结点的key小于当前结点的key,继续找当前结点的左子结点
tree.left=put(tree.left,key,value);
}else{
//新结点的key等于当前结点的key
tree.value=value;
}
return tree;
}
在上面的代码块中,我们定义了两个put方法,一个是给其他类操作的,一个是给自己类操作的,对于外部的用户来说,他只需要将键值对传递进来就好了,排序是我们程序员的事,所以,我们这里的put只有两个参数:
public void put(Integer key,String value)
然后我们通过这个put方法再去调用我们内部的put方法,在这个方法中,我们首先要把我们的根结点root传递进去,然后再将前端传给我们的key:value传递进去
private Node put(Node tree,Integer key,String value)
这样,我们就可以在这个put上进行我们一开始定义的开发流程了:
- 如果树中没有结点,就把当前插入的结点当成首节点使用:
if(tree==null){
//个数加1
n++;
//直接把新结点当成根结点使用
return new Node(null,null,key,value);
}
- 如果树不为空,就从根结点开始遍历,也就是root结点
2-1. 如果要查询的key,小于当前结点的key,则继续查找当前结点的左子结点
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的右子结点
if(key > tree.key){
tree.right=put(tree.right,key,value);
}
2-2. 如果新结点的key大于当前结点的key,则继续找当前结点的右子结点
else if(key<tree.key){
//新结点的key小于当前结点的key,继续找当前结点的左子结点
tree.left=put(tree.left,key,value);
}
2-3:如果新结点的key等于当前结点的key,则树中已经存在这样的结点,替换该结点的value值就好
else{
//新结点的key等于当前结点的key
tree.value=value;
}
现在put方法就执行完毕了,我们把一个前端传递过来的值放入了二叉树中.
上面我们已经实现了二叉树中的put方法,按照我的习惯的话呢接下来我们还是先讲思想,讲get方法和delete方法:
查询方法get实现思想:
从根结点开始:
- 如果要查询的key小于当前结点的key,则继续查找当前结点的左子结点
- 如果要查询的key大于当前结点的key,则继续找当前结点的右子结点
- 如果要查询的key等于当前结点的key,则树中返回当前结点的value
删除方法delete实现思想:
- 找到被删除结点
- 找到被删除结点右子树的最小结点
- 删除右子树中的最小结点
- 让被删除结点的左子树称为最小结点的左子树,让被删除结点的右子树称为最小结点的子树
- 让被删除节点的父结点指向最小结点
按照从简单到困难的准则,我们先从简单的开始,get方法相对于delete而言要简单一点,所以我们先实现get方法
//从树中找到对应的值
public String get(Integer key){
return get(root,key);
}
private String get(Node tree,Integer key){
if(root==null){
return null;
}
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的右子结点
if(key > tree.key){
return get(tree.right,key);
}else if(key<tree.key){
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的左子结点
return get(tree.left,key);
}else{
//要查找的key和当前结点的key相等,返回value
return tree.value;
}
}
通过不停的递归调用get方法,我们就可以不断的查找树的左右结点,从而最终返回get到的结果值,这个非常简单,没什么好说的。
接下来比较重要的是delete方法:
//从指定的树中,根据key删除键中的键值对
public void delete(Integer key){
root=delete(root,key);
}
private Node delete(Node tree,Integer key){
if(tree==null){
return null;
}
if(key > tree.key){
tree.right=delete(tree.right,key);
}else if(key<tree.key){
tree.left=delete(tree.left,key);
}else{
//待删除的key等于当前结点的key,说明当前结点就是要删除的结点
//1、如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if(tree.right==null){
n--;
return tree.left;
}
//2、如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if(tree.left==null){
n--;
return tree.right;
}
//当前结点的左右子树都存在
//找到右子树中的最小结点
Node minNode=tree.right;
//二叉查找树的左结点一定比右结点小
if(minNode.left!=null){
minNode=minNode.left;
}
//到这里就找到了当前结点右子树中最小的结点minNode
//删除右子树中最小的结点
Node node=tree.right;
while (node.left!=null){
if(node.left.left==null){
//说明N的左结点就是我们要找的最小结点
node.left=null;
}else{
node=node.left;
}
}
//到这里,最小结点已经被删除了
//让被删除结点的左子树成为最小结点的左子树,让被删除结点的右子树,成为最小结点的右子树
minNode.left=tree.left;
minNode.right=tree.right;
//让被删除结点的父结点指向最小结点
tree=minNode;
//个数减1
n--;
}
return tree;
}
上面的这段代码看着很长,且听我与你一一分解
首先我们通过public方法方便别的类调用,用户只需要传递key值进入我们的后台,我们就可以通过后台的查找方法来查找二叉树中的元素,然后对其进行删除。
这同样使用了递归的思想。通过不断的查找二叉树中的元素,找到要删除的那个数据。
if(key > tree.key){
tree.right=delete(tree.right,key);
}else if(key<tree.key){
tree.left=delete(tree.left,key);
}else{
//待删除的key等于当前结点的key,说明当前结点就是要删除的结点
//1、如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if(tree.right==null){
n--;
return tree.left;
}
//2、如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if(tree.left==null){
n--;
return tree.right;
}
//当前结点的左右子树都存在
//找到右子树中的最小结点
Node minNode=tree.right;
//二叉查找树的左结点一定比右结点小
if(minNode.left!=null){
minNode=minNode.left;
}
//到这里就找到了当前结点右子树中最小的结点minNode
//删除右子树中最小的结点
Node node=tree.right;
while (node.left!=null){
if(node.left.left==null){
//说明N的左结点就是我们要找的最小结点
node.left=null;
}else{
node=node.left;
}
}
//到这里,最小结点已经被删除了
//让被删除结点的左子树成为最小结点的左子树,让被删除结点的右子树,成为最小结点的右子树
minNode.left=tree.left;
minNode.right=tree.right;
//让被删除结点的父结点指向最小结点
tree=minNode;
//个数减1
n--;
}
如果当前递归到的这个结点的元素值小于我们用户传递进来的key的话我们将其往左进行递归
if(key > tree.key){
tree.right=delete(tree.right,key);
}
如果大于的话我们就往右进行递归
else if(key<tree.key){
tree.left=delete(tree.left,key);
}
如果说用户传递过来的key与当前结点的key值相等的话,那么说明当前的这个结点就是我们要删除的这个结点
else{
//待删除的key等于当前结点的key,说明当前结点就是要删除的结点
//1、如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if(tree.right==null){
n--;
return tree.left;
}
//2、如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if(tree.left==null){
n--;
return tree.right;
}
//当前结点的左右子树都存在
//找到右子树中的最小结点
Node minNode=tree.right;
//二叉查找树的左结点一定比右结点小
if(minNode.left!=null){
minNode=minNode.left;
}
//到这里就找到了当前结点右子树中最小的结点minNode
//删除右子树中最小的结点
Node node=tree.right;
while (node.left!=null){
if(node.left.left==null){
//说明N的左结点就是我们要找的最小结点
node.left=null;
}else{
node=node.left;
}
}
//到这里,最小结点已经被删除了
//让被删除结点的左子树成为最小结点的左子树,让被删除结点的右子树,成为最小结点的右子树
minNode.left=tree.left;
minNode.right=tree.right;
//让被删除结点的父结点指向最小结点
tree=minNode;
//个数减1
n--;
}
return tree;
}
现在又要研究二叉树中的删除方法中结点的性质了,我们既然要把这个元素进行删除操作的话,那么是不是,我们就要将他的子结点的层级往上提升一级,那么我们接着研究:
//待删除的key等于当前结点的key,说明当前结点就是要删除的结点
//1、如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if(tree.right==null){
n--;
return tree.left;
}
//2、如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if(tree.left==null){
n--;
return tree.right;
}
如果当前结点的右子树不存在,那么我们就把该结点的左子树给他提上去
如果当前结点的左子树不存在,那么我们就把他的右子树提上去
如果说当前结点的左右子树都存在的话,那么就有点小麻烦了,那么我们就要从要被删除的这个结点的右子树中找到他的最小元素,然后把他的最小元素给他提上去。
//到这里就找到了当前结点右子树中最小的结点minNode
//删除右子树中最小的结点
Node node=tree.right;
while (node.left!=null){
if(node.left.left==null){
//说明N的左结点就是我们要找的最小结点
node.left=null;
}else{
node=node.left;
}
}
//到这里,最小结点已经被删除了
//让被删除结点的左子树成为最小结点的左子树,让被删除结点的右子树,成为最小结点的右子树
minNode.left=tree.left;
minNode.right=tree.right;
//让被删除结点的父结点指向最小结点
tree=minNode;
//个数减1
n--;
}
最后在我们所有操作都已经执行完毕之后,我们只要返回这个改变之后的tree就好了
好了,现在我们创建一个外部类Test1来验证此程序的正确性
class Test1{
public static void main(String[] args) {
BinaryTree tree=new BinaryTree();
tree.put(8,"鸡霸");
tree.put(7,"田七");
tree.put(9,"吴久");
tree.put(3,"张三");
tree.put(6,"陆远");
System.out.println(tree.get(7));
tree.delete(6);
tree.delete(9);
tree.delete(3);
System.out.println(tree.size());
}
}
然后我放出全部代码方便大家实验:
package com.gm.tree;
public class BinaryTree {
//记录一个根结点
private Node root;
//记录树中的元素个数
private int n;
public BinaryTree() {
}
//向树中插入一个键值对
public void put(Integer key,String value){
root=put(root,key,value);
}
//给指定的数x添加一个键,添加一个键值对,并返回添加后的新数
private Node put(Node tree,Integer key,String value){
if(tree==null){
//个数加1
n++;
//直接把新结点当成根结点使用
return new Node(null,null,key,value);
}
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的右子结点
if(key > tree.key){
tree.right=put(tree.right,key,value);
}else if(key<tree.key){
//新结点的key小于当前结点的key,继续找当前结点的左子结点
tree.left=put(tree.left,key,value);
}else{
//新结点的key等于当前结点的key
tree.value=value;
}
return tree;
}
//从树中找到对应的值
public String get(Integer key){
return get(root,key);
}
private String get(Node tree,Integer key){
if(root==null){
return null;
}
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的右子结点
if(key > tree.key){
return get(tree.right,key);
}else if(key<tree.key){
//比较key,如果新结点大于当前结点的key,继续寻找当前结点的左子结点
return get(tree.left,key);
}else{
//要查找的key和当前结点的key相等,返回value
return tree.value;
}
}
//从指定的树中,根据key删除键中的键值对
public void delete(Integer key){
root=delete(root,key);
}
private Node delete(Node tree,Integer key){
if(tree==null){
return null;
}
if(key > tree.key){
tree.right=delete(tree.right,key);
}else if(key<tree.key){
tree.left=delete(tree.left,key);
}else{
//待删除的key等于当前结点的key,说明当前结点就是要删除的结点
//1、如果当前结点的右子树不存在,则直接返回当前结点的左子结点
if(tree.right==null){
n--;
return tree.left;
}
//2、如果当前结点的左子树不存在,则直接返回当前结点的右子结点
if(tree.left==null){
n--;
return tree.right;
}
//当前结点的左右子树都存在
//找到右子树中的最小结点
Node minNode=tree.right;
//二叉查找树的左结点一定比右结点小
if(minNode.left!=null){
minNode=minNode.left;
}
//到这里就找到了当前结点右子树中最小的结点minNode
//删除右子树中最小的结点
Node node=tree.right;
while (node.left!=null){
if(node.left.left==null){
//说明N的左结点就是我们要找的最小结点
node.left=null;
}else{
node=node.left;
}
}
//到这里,最小结点已经被删除了
//让被删除结点的左子树成为最小结点的左子树,让被删除结点的右子树,成为最小结点的右子树
minNode.left=tree.left;
minNode.right=tree.right;
//让被删除结点的父结点指向最小结点
tree=minNode;
//个数减1
n--;
}
return tree;
}
public int size(){
return n;
}
private static class Node{
public Node left;
public Node right;
public Integer key;
public String value;
public Node(Node left, Node right, Integer key, String value) {
this.left = left;
this.right = right;
this.key = key;
this.value = value;
}
}
}
class Test1{
public static void main(String[] args) {
BinaryTree tree=new BinaryTree();
tree.put(8,"雷霸天");
tree.put(7,"田七");
tree.put(9,"吴久");
tree.put(3,"张三");
tree.put(6,"陆远");
System.out.println(tree.get(7));
tree.delete(6);
tree.delete(9);
tree.delete(3);
System.out.println(tree.size());
}
}