前言
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先
236. 二叉树的最近公共祖先 - 力扣(LeetCode)
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大
完整代码
class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root == null) return null; if(root == p || root == q){ return root; } TreeNode leftT = lowestCommonAncestor( root.left,p,q); TreeNode rightT = lowestCommonAncestor( root.right,p,q); if(leftT != null && rightT != null ){ return root; }else if(leftT != null){ return leftT; }else{ return rightT; } } }
第二种思路
1.用两个栈存储路径
2.路径存好了,求栈的大小
3.让栈中多的元素出差值个元素
4.开始出栈,知道栈顶元素相同,此时就是公共祖先
5.如何去找到从根节点到一个指定1节点的路径?
完整代码
class Solution { //root 根节点 node 指定的节点 stack 存放从根节点到指定节点的路径 ppublic boolean getPath(TreeNode root,TreeNode node,Stack<TreeNode> stack){ if(root == null || node == null){ return false; } stack.push(root); if(root == node){ return true; } boolean flg = getPath(root.left,node,stack); if(flg == true){ return true; } flg = getPath(root.right,node,stack); if(flg == true){ return true; } stack.pop(); return false; } public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root == null) return null; Stack<TreeNode> stack1 = new Stack<>(); getPath(root,p,stack1); Stack<TreeNode> stack2 = new Stack<>() getPath(root,q,stack2); int size1 = stack1.size(); int size2 = stack2.size(); if(size1 > size2){ int size = size1 - size2; while(size != 0){ stack1.pop(); size--; } while(!stack1.isEmpty() && !stack2.isEmpty() ){ if(stack1.peek() == stack2.peek()){ return stack1.pop(); }else{ stack1.pop(); stack2.pop(); } } }else{ int size = size2 - size1; while(size != 0){ stack2.pop(); size--; } while(!stack1.isEmpty() && !stack2.isEmpty()){ if(stack1.peek() == stack2.peek()){ return stack2.pop(); }else{ stack1.pop(); stack2.pop(); } } } return null; } }
二叉树搜索树转换成排序双向链表
二叉搜索树与双向链表_牛客题霸_牛客网 (nowcoder.com)
如果让这棵二叉搜索树变为链表,1的前驱为空, 3的前驱是1,4的前驱是3,5的前驱是4,6的前驱是5,7的前驱是6,8的前驱是7
1的后继是3,3的后继是4,4的后继是5,5的后继是6,6的后继是7,7的后继是8
这是我们最终想要的效果
left:变成双向链表的前驱
right:变成双向链表的后驱
需要在中序遍历的过程中,修改每个节点的left和right
1.中序遍历不难
2.难点在于如何修改指向
完整代码
public class Solution { TreeNode prev = null; //先写一个中序遍历 public void inorder(TreeNode pcur){ if(pcur == null) return ; inorder(pcur.left); pcur.left =prev; if(prev != null){ prev.right = pcur; } prev = pcur; System.out.print(pcur.val + " "); inorder(pcur.right); } public TreeNode Convert(TreeNode pRootOfTree) { if(pRootOfTree == null) return null; inorder(pRootOfTree); TreeNode head = pRootOfTree; while(head.left != null){ head = head.left; } return head; } }
根据一棵树的前序遍历与中序遍历构造二叉树
105. 从前序与中序遍历序列构造二叉树 - 力扣(LeetCode)
给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。
pi来遍历这个字符串
ri表示根的位置
因为是前序遍历,pi++的时候,拿到的B就A这棵树的左树,此时B又是A这棵子树的根
假设中序遍历的起始位置是ib,结束位置是ie
1.先将pi下标的元素,创建 为root
2,在中序遍历的数组当中,找到当前pi下标的元素,存在的位置ri
完整代码
class Solution { public int preIndex = 0; public TreeNode createTreeByPandI(int[] preorder,int[] inorder,int inbegin,int inend){ if(inbegin > inend){ return null; } TreeNode root = new TreeNode(preorder[preIndex]); int rootIndex = findIndexofI(inorder,inbegin,inend,preorder[preIndex]); if(rootIndex == -1){ return null; } preIndex++; root.left = createTreeByPandI(preorder,inorder,inbegin,rootIndex - 1); root.right = createTreeByPandI(preorder,inorder,rootIndex+ 1,inend); return root; } public int findIndexofI(int[] inorder,int inbegin,int inend,int key){ for(int i = inbegin; i <= inend; i++ ){ if(inorder[i] == key){ return i; } } return -1; } public TreeNode buildTree(int[] preorder, int[] inorder) { if(preorder == null && inorder == null){ return null; } return createTreeByPandI(preorder,inorder,0,inorder.length - 1); } }
二叉树前序非递归遍历实现
首先,非递归就需要用循环
用栈来处理
让cur来遍历二叉树的每个节点,用前序遍历的方式
cur开始指向root
除了要打印A,然后把A也放到栈里面,来存储下来当前路径的信息
cur继续往后走,只要cur不为空,继续打印,继续往栈里存放
此时cur为空了
说明D这棵树的左树没有了,根也被打印了,那么就开始往D的右边走
所以我们需要在这里额外定义一个引用top
弹出栈顶元素
然后让当前的cur等于D的right,D的right也是空,说明这棵树完了
再来看当前栈为不为空,不为空弹出栈顶元素B
然后再让cur = top.right,为空吗,不为空拿起来放到栈里,同时把E打印
然后cur等于cur.left,为空再弹出栈顶元素,cur = top.right
以此类推
完整代码
class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> list = new ArrayList<>(); Stack<Integer> stack = new Stack<>(); TreeNode cur = root; while(cur != null || !stack.isEmpty()){ while(cur != null){ stack.push(cur); //System.out.print(cur.val + " "); list.add(cur.val); cur = cur.left; } TreeNode top = stack.pop(); cur = top.right; } return list; } }
二叉树中序非递归遍历实现
完整代码
class Solution { public List<Integer> preorderTraversal(TreeNode root) { List<Integer> list = new ArrayList<>(); Stack<Integer> stack = new Stack<>(); TreeNode cur = root; while(cur != null || !stack.isEmpty()){ while(cur != null){ stack.push(cur); cur = cur.left; } TreeNode top = stack.pop(); //System.out.print(cur.val + " "); list.add(cur.val); cur = top.right; } return list; } }
二叉树后序非递归遍历实现
如果cur不为空就放到栈里面,继续往左走
cur为空了
此时我们看一下栈顶的元素D
此时如果要打印D就必须判断D的右边为不为空
如果右边为空就打印D
不为空就让cur = cur,right
完整代码
class Solution { public List<Integer> postorderTraversal(TreeNode root) { Stack<Integer> stack = new Stack<>(); TreeNode cur = root; List<Integer> lsit = new ArrayList<>(); TreeNode prev = null; while(cur != null || !stack.isEmpty()){ while(cur != null){ stack.push(cur); cur = cur.left; } TreeNode top = stack.peek(); //如果当前节点的右子树被打印过 或者 遍历过直接弹出 if(top.right == null || top.right == prev){ stack.pop(); lsit.add(cur.left); prev = top;//记录一下最近一次打印的节点 }else{ cur = top.right; } } } }