目录
题目一:最长递增子序列
给你一个整数数组 nums
,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7]
是数组 [0,3,1,6,2,2,7]
的子序列
示例 1:
输入:nums = [10,9,2,5,3,7,101,18] 输出:4 解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。
示例 2:
输入:nums = [0,1,0,3,2,3] 输出:4
示例 3:
输入:nums = [7,7,7,7,7,7,7] 输出:1
首先说明本题是子序列,也就是在一个数组中可以跳过某一个元素,组成序列,可以不连续
而子数组则是要求连续的
并且本题要求是找到严格递增子序列,也就是不能有重复元素
①状态表示
②状态转移方程
此时分为两类,i位置单独作为一个子序列,或是i位置跟在前面的某一个递增子序列的后面,作为一个子序列
也就是长度大于1时,此时的dp[i] = dp[j] + 1,但是dp[j] 时会变的,所以是 max(dp[j] + 1),j的取值范围是 0 ~ i - 1,所以这里是在 0 ~ i - 1 这个范围内找一个最大值
求dp[j] 的最大值
③初始化
因为数组只要有值,那么最小长度就是1,所以可以将dp表初始化为1,这样就不需要考虑第一种长度为1的情况了
④填表顺序
从左往右
⑤返回值
因为 dp[i] 表示,以 i 位置为结尾的最长子序列,而最长子序列可能是任意位置结尾,所以需要取dp表的最大值返回
代码如下:
class Solution
{
public:
int lengthOfLIS(vector<int>& nums)
{
int n = nums.size(), ret = 1;
vector<int> dp(n, 1);
for(int i = 1; i < n; i++)
{
// 0 ~ i - 1范围内找最大值
for(int j = 0; j < i; j++)
if(nums[j] < nums[i])
dp[i] = max(dp[j] + 1, dp[i]);
// 每得到一个dp[i],得到最大值给ret
ret = max(ret, dp[i]);
}
return ret;
}
};
题目二:摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个