动态规划:子序列问题

目录

题目一:最长递增子序列

题目二:摆动序列

题目三:最长递增子序列的个数

题目四:最长数对链


题目一:最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:

输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:

输入:nums = [7,7,7,7,7,7,7]
输出:1

首先说明本题是子序列,也就是在一个数组中可以跳过某一个元素,组成序列,可以不连续
而子数组则是要求连续的

并且本题要求是找到严格递增子序列,也就是不能有重复元素

①状态表示

②状态转移方程

此时分为两类,i位置单独作为一个子序列,或是i位置跟在前面的某一个递增子序列的后面,作为一个子序列

也就是长度大于1时,此时的dp[i] = dp[j] + 1,但是dp[j] 时会变的,所以是 max(dp[j] + 1),j的取值范围是 0 ~ i - 1,所以这里是在 0 ~ i - 1 这个范围内找一个最大值

求dp[j] 的最大值

③初始化

因为数组只要有值,那么最小长度就是1,所以可以将dp表初始化为1,这样就不需要考虑第一种长度为1的情况了

④填表顺序

从左往右

⑤返回值

因为 dp[i] 表示,以 i 位置为结尾的最长子序列,而最长子序列可能是任意位置结尾,所以需要取dp表的最大值返回

代码如下:

class Solution 
{
public:
    int lengthOfLIS(vector<int>& nums) 
    {
        int n = nums.size(), ret = 1;
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
        {
            // 0 ~ i - 1范围内找最大值
            for(int j = 0; j < i; j++)
                if(nums[j] < nums[i])
                    dp[i] = max(dp[j] + 1, dp[i]);
            // 每得到一个dp[i],得到最大值给ret
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};

题目二:摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值