一、简介
1.
elasticsearch是一款非常强大的开源搜索引擎,可以帮助我们从海量数据中快速找到需要的内容。
结合kibana,Logstash,Beats,也就是elastic stack(ELK),被广泛用于日志数据分析,实时监控等领域。
Elasticsearch是核心,其他的可以用自己的方式进行替换。
2. 正向索引和倒排索引
2.1 正向索引:从数据库中一条一条取出数据,进行比较,和搜索匹配的放入结果集,和搜索不匹配的直接丢弃。可以得到完整的结果,但是这是基于逐行搜索的方式,效率非常低下。
2.2 倒排索引(ES):分为文档和词条两个概念
***文档:每条数据都是一个文档,可以比喻为一个表中的一行数据
文档数据会被序列化为json格式存储到ES中
***词条:将文档按照语义分成不同的词语,每个词语都是一个词条
用ES会为每个表创建一个新表,用来存储词条和该词条的id
如:小米手机可以分为 小米和手机两个词条,将词条存入词条表中,表中没有的会存入,并记录该词条的id,例如小米是1,手机也是1。当华为手机时,差分为华为和手机,华为表中没有,新增一行加入 华为 : 2 。 而华为分出的手机已经在表中存在,不需要加入新的行,只需要在手机哪一行加入手机(华为)对应的id即可,看上表。
3.Mysql和ES的比较
MySQL:擅长事务类型操作,可以确保数据的安全性和一致性。适合例如商品下单的功能
ES:擅长海量数据的搜索和分析和计算,适用于商品的查询和搜索。
写操作直接进入mysql,读操作就进入ES,分工明确,类似于mysql的主从复制。
二、ES和kibana的安装
1.单点部署ES
1.1 创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络。
docker network create es-net
1.2 加载镜像
这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G,不建议大家自己pull。提前备好该镜像的tar包。
将其上传到虚拟机上,进行命令加载即可
docker load -i es.tar
同样的kibana的tar包也重复上述操作即可。
1.3.运行
运行docker命令,部署单点es:
docker run -d \
--name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v es-data:/usr/share/elasticsearch/data \
-v es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network es-net \
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.12.1
命令解释:
-
-e "cluster.name=es-docker-cluster"
:设置集群名称 -
-e "http.host=0.0.0.0"
:监听的地址,可以外网访问 -
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小 -
-e "discovery.type=single-node"
:非集群模式 -
-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录 -
-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录 -
-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录 -
--privileged
:授予逻辑卷访问权 -
--network es-net
:加入一个名为es-net的网络中 -
-p 9200:9200
:端口映射配置
通过浏览器访问,能看到返回这些json数据,证明es已经准备好了
2.部署kibana
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
2.1.部署
运行docker命令,部署kibana
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.12.1
-
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中 -
-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch -
-p 5601:5601
:端口映射配置
kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
此时,在浏览器输入地址访问:http://ip:5601,即可看到结果
3.安装IK分词器
3.1.在线安装ik插件(较慢)
# 进入容器内部 docker exec -it elasticsearch /bin/bash # 在线下载并安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip #退出 exit #重启容器 docker restart elasticsearch
3.2.离线安装ik插件(推荐)
1)查看数据卷目录
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[ { "CreatedAt": "2022-05-06T10:06:34+08:00", "Driver": "local", "Labels": null, "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data", "Name": "es-plugins", "Options": null, "Scope": "local" } ]
说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data
这个目录中。
2)解压缩分词器安装包
下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
3)上传到es容器的插件数据卷中
也就是/var/lib/docker/volumes/es-plugins/_data
:
4)重启容器
# 4、重启容器 docker restart es
# 查看es日志 docker logs -f es
5)测试:
IK分词器包含两种模式:
-
ik_smart
:最少切分 -
ik_max_word
:最细切分
GET /_analyze { "analyzer": "ik_max_word", "text": "学习java太棒了" }
结果:
3.3 扩展词词典
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典--> <entry key="ext_dict">ext.dic</entry> </properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
奥力给
4)重启elasticsearch
docker restart es # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载ext.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "90%,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
3.4 停用词词典
在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd"> <properties> <comment>IK Analyzer 扩展配置</comment> <!--用户可以在这里配置自己的扩展字典--> <entry key="ext_dict">ext.dic</entry> <!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典--> <entry key="ext_stopwords">stopword.dic</entry> </properties>
3)在 stopword.dic 添加停用词
八嘎
4)重启elasticsearch
# 重启服务 docker restart elasticsearch docker restart kibana # 查看 日志 docker logs -f elasticsearch
日志中已经成功加载stopword.dic配置文件
5)测试效果:
GET /_analyze { "analyzer": "ik_max_word", "text": "Java就业率超过95%,都点赞,奥力给!" }
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
4.部署es集群
部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间
首先编写一个docker-compose文件,内容如下:
version: '2.2' services: es01: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es01 environment: - node.name=es01 - cluster.name=es-docker-cluster - discovery.seed_hosts=es02,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data01:/usr/share/elasticsearch/data ports: - 9200:9200 networks: - elastic es02: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es02 environment: - node.name=es02 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es03 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data02:/usr/share/elasticsearch/data networks: - elastic es03: image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1 container_name: es03 environment: - node.name=es03 - cluster.name=es-docker-cluster - discovery.seed_hosts=es01,es02 - cluster.initial_master_nodes=es01,es02,es03 - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" ulimits: memlock: soft: -1 hard: -1 volumes: - data03:/usr/share/elasticsearch/data networks: - elastic volumes: data01: driver: local data02: driver: local data03: driver: local networks: elastic: driver: bridge
Run docker-compose
to bring up the cluster:
<br class="Apple-interchange-newline"><div></div>
docker-compose up
三、索引库操作
1. mapping属性
mapping是对索引库文档的约束,常见的mapping属性包括:
分词器只有在字符串类型的字段时才会使用。properties就是指图片中name的子属性,firstName,可以自己为name添加properti子属性。
四、java客户端操作ES======》rest client
1.什么是restclient:
官方为java语言提供的一个操作es的客户端。
2.入门案例了解restclient的用法
2.1 导入数据库资料,创建一个hotel表:
2.2 导入hotel-demo工程
2.3 编写mapping
PUT /_hotel
{
"mappings":{
"properties":{
"id":{
"type":"keyword"
},
"name":{
"type":"text",
"analyzer":"ik_max_word",
"copy_to":"all"
},
"address":{
"type":"keyword",
"index":false
},
"price":{
"type":"integer"
},
"score":{
"type":"integer"
},
"brand":{
"type":"keyword",
"copy_to":"all"
},
"city":{
"type":"keyword"
},
"starName":{
"type":"keyword"
},
"business":{
"type":"keyword",
"copy_to":"all"
},
"lcoation":{
"type":"geo_point"
},
"pic":{
"type":"keyword",
"index":false
},
"all":{
"type":"text",
"analyzer":"ik_max_word"
}
}
}
}
其中copy_to表示将其整合到一个字段里面,相当于多条联查。
2.4 初始化JavaRestClient
1.导入依赖
=================================》依赖:
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
2.初始化RestHighLeveClient:
用完需要让客户端关闭
3.编写客户端创建索引库代码
3.1 创建索引库
其中Mapping_TEMPLATE就是我们之前在kibana上写好的DSL语句。
测试:
可以看到可以查询到,证明索引库创建成功。
3.2 查看索引库是否存在
@Test
void testExistsIndex() throws IOException {
// 1.准备Request
GetIndexRequest request = new GetIndexRequest("hotel");
// 3.发送请求
boolean isExists = client.indices().exists(request, RequestOptions.DEFAULT);
System.out.println(isExists ? "存在" : "不存在");
}
3.3 删除索引库
@Test
void testDeleteIndex() throws IOException {
// 1.准备Request
DeleteIndexRequest request = new DeleteIndexRequest("hotel");
// 3.发送请求
client.indices().delete(request, RequestOptions.DEFAULT);
}
4. restclient 操作文档
4.1 添加文档
@Test
void testAddDocument() throws IOException {
// 1.查询数据库hotel数据
Hotel hotel = hotelService.getById(61083L);
// 2.转换为HotelDoc
HotelDoc hotelDoc = new HotelDoc(hotel);
// 3.转JSON
String json = JSON.toJSONString(hotelDoc);
// 1.准备Request
IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
// 2.准备请求参数DSL,其实就是文档的JSON字符串
request.source(json, XContentType.JSON);
// 3.发送请求
client.index(request, RequestOptions.DEFAULT);
}
4.2 查看文档
@Test
void testGetDocumentById() throws IOException {
// 1.准备Request // GET /hotel/_doc/{id}
GetRequest request = new GetRequest("hotel", "61083");
// 2.发送请求
GetResponse response = client.get(request, RequestOptions.DEFAULT);
// 3.解析响应结果
String json = response.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
System.out.println("hotelDoc = " + hotelDoc);
}
测试:
4.3 删除文档
@Test
void testDeleteDocumentById() throws IOException {
// 1.准备Request // DELETE /hotel/_doc/{id}
DeleteRequest request = new DeleteRequest("hotel", "61083");
// 2.发送请求
client.delete(request, RequestOptions.DEFAULT);
}
4.4 修改文档
@Test
void testUpdateById() throws IOException {
// 1.准备Request
UpdateRequest request = new UpdateRequest("hotel", "61083");
// 2.准备参数
request.doc(
"price", "870"
);
// 3.发送请求
client.update(request, RequestOptions.DEFAULT);
}
4.5 批量添加文档
@Test
void testBulkRequest() throws IOException {
// 查询所有的酒店数据
List<Hotel> list = hotelService.list();
// 1.准备Request
BulkRequest request = new BulkRequest();
// 2.准备参数
for (Hotel hotel : list) {
// 2.1.转为HotelDoc
HotelDoc hotelDoc = new HotelDoc(hotel);
// 2.2.转json
String json = JSON.toJSONString(hotelDoc);
// 2.3.添加请求
request.add(new IndexRequest("hotel").id(hotel.getId().toString()).source(json, XContentType.JSON));
}
// 3.发送请求
client.bulk(request, RequestOptions.DEFAULT);
}
五、分布式搜索引擎
1.DSL查询文档
1.1 DSL Query的分类
*
//查询所有
GET /hotel/_search
{
"query": {
"match_all":{}
}
}
* multi_match查询是根据多个字段查询,查询字段越多,性能越差.
* term 精确搜索 根据一个字段的值 精确搜索,一般搜索keyword类型,数值类型,布尔类型,日期类型字段。
* range 根据数值范围查询,可以是数值,日期的范围
* distance 附近距离的查询 距离-------中心点
* function score 复合查询 ,算分函数查询,可以控制文档相关性算分,控制文档排名,例如百度竞价
* bool查询
2.搜索结果处理
2.1 排序
2.2 高亮
就是在搜索结果中把搜索关键字突出显示
3.RestClient查询文档
3.1 match_all 查询
@Test
void testMatchAll() throws IOException {
SearchRequest searchRequest = new SearchRequest("hotel");
searchRequest.source().query(QueryBuilders.matchAllQuery());
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
System.out.println(JSON.toJSONString(response));
}
3.2 match查询
@Test
void testMatchAll() throws IOException {
SearchRequest searchRequest = new SearchRequest("hotel");
searchRequest.source().query(QueryBuilders.matchQuery("all","如家"));
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
long totalHits = hits.getTotalHits().value;
System.out.println("共查到:"+totalHits+"条数据~");
SearchHit[] hits1 = hits.getHits();
for (SearchHit hit : hits1){
String sourceAsString = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
System.out.println(hotelDoc);
}
}
3.3 term查询(精确查询)
@Test
void testMatchAll() throws IOException {
SearchRequest searchRequest = new SearchRequest("hotel");
searchRequest.source().query(QueryBuilders.termQuery("city","上海"));
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
long totalHits = hits.getTotalHits().value;
System.out.println("共查到:"+totalHits+"条数据~");
SearchHit[] hits1 = hits.getHits();
for (SearchHit hit : hits1){
String sourceAsString = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
System.out.println(hotelDoc);
}
}
3.4 range组合查询
@Test
void testMatchAll() throws IOException {
SearchRequest searchRequest = new SearchRequest("hotel");
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
boolQueryBuilder.must(QueryBuilders.termQuery("city","上海"));
boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").lte(250));
searchRequest.source().query(boolQueryBuilder);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
long totalHits = hits.getTotalHits().value;
System.out.println("共查到:"+totalHits+"条数据~");
SearchHit[] hits1 = hits.getHits();
for (SearchHit hit : hits1){
String sourceAsString = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
System.out.println(hotelDoc);
}
}
3.5 分页和结果排序
@Test
void testPageAndSort() throws IOException {
SearchRequest searchRequest = new SearchRequest("hotel");
MatchAllQueryBuilder matchAllQuery = QueryBuilders.matchAllQuery();
searchRequest.source().query(matchAllQuery);
searchRequest.source().sort("price", SortOrder.ASC).from(0).size(5);
SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = response.getHits();
long totalHits = hits.getTotalHits().value;
System.out.println("共查到:"+totalHits+"条数据~");
SearchHit[] hits1 = hits.getHits();
for (SearchHit hit : hits1){
String sourceAsString = hit.getSourceAsString();
HotelDoc hotelDoc = JSON.parseObject(sourceAsString, HotelDoc.class);
System.out.println(hotelDoc);
}
}