前言
淘宝是阿里巴巴集团旗下的一个电子商务平台,成立于2003 年。经过多年的发展,淘宝已经成为了中国最大的在线购物平台之一,拥有数亿的注册用户和数百万的商家。随着互联网技术的不断发展,淘宝平台上的数据量也越来越大这些数据包括用户的行为数据、商品信息、交易数据等。
摘要
随着互联网技术的不断发展,大数据成为了当今社会的热门话题。在电子商务领域,大数据的应用越来越广泛,尤其是在淘宝这样的电商平台上。本文以“淘宝用户行为分析”为题,对淘宝平台上的大数据进行分析。
注:此项目由小组共同完成,我负责的是销量前十的商品信息统计,所以本文仅供参考,希望有小部分的帮助。
一、分析
根据商品的购买量来统计数据集内销量前十的商品。首先需要对用户的行为
进行过滤,筛选出用户购买商品的行为,然后相应的选择购买的商品id,之后将DataFrame转换为RDD,使用RDD相关操作来统计各商品销售数量,排序后取出销量前十的商品,将商品信息其转换为字符串后保存至json文件。
二、步骤
2.1 过滤、筛选
对用户的行为进行过滤,筛选出用户购买商品的行为
2.2 统计、排序
使用RDD相关操作来统计各商品销售数量,并且进行排序
2.3 保存
排序完成后,即可取出销量前十的商品,将商品信息其转换为字符串后保存至json文件
三、代码
以下代码是使用Apache Spark(一个开源的大数据处理框架)对DataFrame数据进行处理的一种方式。
def Top10(data: DataFrame,sc:SparkContext):Unit ={
val top_10_item = data.filter(data("action") === "buy")
Dataset