【DataWhale AI 夏令营】机器学习:电力需求预测挑战赛——task2

一、赛题任务

给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。

二、赛题数据简介

赛题数据由训练集和测试集组成,为了保证比赛的公平性,将每日日期进行脱敏,用1-N进行标识。
即1为数据集最近一天,其中1-10为测试集数据。
数据集由字段id(房屋id)、 dt(日标识)、type(房屋类型)、target(实际电力消耗)组成。

三、使用lightgbm解决问题

1. 下载Python库lightgbm

由于解决问题需要用到进阶模型lightgbm,而飞桨平台的BML CodeLab中没有相应的库,需要通过运行程序来安装。
使用的lightgbm库版本为3.3.0,该版本在模型训练时需传递参数verbose_eval(每隔verbose_eval次迭代,输出一次评估结果)与early_stopping_rounds(如果验证度量在最后一轮停止后没有改进,该参数将停止训练),而4.0.0之后(待验证)的版本则不需要。

!pip install lightgbm==3.3.0

2. 导入模块

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')

3. 探索性数据分析(EDA)

导入数据集

由于代码在飞桨平台的BML CodeLab上运行,因此训练集和测试集的目录与task1中的baseline一致。

train = pd.read_csv('./data/data283931/train.csv')
test = pd.read_csv('./data/data283931/test.csv')

训练集中部分数据如下:
训练集

  • id:房屋id;
  • dt:日标识,训练数据dt最小为11,不同id对应序列长度不同;
  • type:房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;
  • target:实际电力消耗,本次比赛的预测目标。

数据的直观显示:房屋类型-平均实际电力消耗柱状图

根据房屋类型type的值划分target集合,并计算各自type值对应的平均target值,以柱状图形式输出。

import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

柱状图如下:
柱状图

数据的直观显示:日标识-实际电力消耗折线图

从训练集中选取id为00037f39cf的数据,以日标识dt为序列,打印关于target的折线图:

specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()

折线图

4. 特征工程

历史平移特征

通过历史平移获取上个阶段的信息;可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。

窗口统计特征

窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。例如,可以将d时刻之前的三个时间单位(d-3, d-2, d-1)的信息进行统计构建特征给到d时刻。

# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

5. 模型训练与测试集预测

上文提到的lightgbm模型,是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数。

训练集和验证集的构建

由于数据存在时序关系,所以需要严格按照时序进行切分:

  • 选择原始训练集中dt为30之后的数据作为训练数据;
  • 选择原始训练集中dt为30之前的数据作为验证数据;
  • 保证了数据不存在穿越问题(不使用未来数据预测历史数据)。
def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

四、尝试与改进

1. 调整窗口统计信息

在学习指南中提到了这样一句话:
通过特征工程挖掘特征可以很快的提升模型预测效果,这也是数据挖掘比赛中的主要优化方向,很多情况下会决定最终的成绩。
所以我就尝试将窗口统计特征中参与平均值计算的d时刻之前的时间单位的信息3个分别调整到2个4个,结果在提交成绩之后的评分情况后出现了这样的结果:

评分
可见,在只改动了窗口统计信息的计算公式的情况下,参与计算的信息数为3时最优,信息数为2和4时效果相近。

2. 调整模型参数

除了针对特征挖掘工程的相关信息进行调整外,本人还尝试调整了模型参数中的学习率,具体是将模型中原来的learning_rate参数由0.05分别改为0.10.025,结果如下(学习率0.05见上图第3组结果):
评分2
可见,在只改动学习率的情况下,学习率为0.05时最优,学习率为0.025与0.1时效果相同。

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞升 | 霸气

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值